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Abstract

This paper develops and applies an information acquisition model to analyze active
management when ESG matters. In equilibrium, sustainable investing leads mutual
fund managers to acquire information when cross-asset ESG attributes and cross-fund
ESG preferences are dispersed. Sustainability-based information decisions magnify fund
heterogeneities in stock holdings and tracking errors, amplify the scope of active man-
agement, as well as reduce discount rates and improve price informativeness for un-
derlying assets with sustainability profiles that depart from the average. Enforcing
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substantial utility losses, illustrating the economic significance of nonpecuniary motives.
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1 Introduction

The managerial skill of active mutual funds has been of longstanding interest to financial
economists. Fund managers have incentives to invest in research and information acquisition
when the resulting superior performance allows them to attract capital flows and collect eco-
nomic rents (Berk and Green, 2004; Stambaugh, 2014; Choi and Robertson, 2020). However,
in recent years, with the growing awareness of Environmental, Social, and Governance (ESG)
considerations, investment decisions are increasingly influenced by nonpecuniary motives be-
yond financial performance (Hartzmark and Sussman, 2019). At the start of 2020, global
sustainable investment reached US$ 35.3 trillion, accounting for 36% of all professionally
managed assets and an astonishing 55% increase from 2016 (source: GSIA, 2020).1

Despite the rapid growth of sustainable investing, to date, little attention has been de-
voted to addressing the following key questions from an equilibrium perspective. How does
sustainable investing interact with mutual funds’ information acquisition and attention allo-
cation decisions? What are the implications of ESG-perceptive financial intermediaries for
the cross-section of stock prices and price informativeness? How does sustainable investing
affect the scope of the active fund management industry? Answers to these questions could
be useful in understanding how intermediaries incorporate social objectives into their infor-
mation acquisition and attention allocation mechanisms, which could potentially affect the
price efficiency of the securities market and the allocation of resources in the economy.

The paper aims to address these key questions by developing an equilibrium model on
active fund management when ESG matters. We formulate an economy consisting of multiple
risky assets and a continuum of risk-averse agents. The assets differ in their ESG profiles,
ranging from the most (i.e., green) to the least sustainable (i.e., brown). The agents are
heterogeneous in two ways. First, their preferences for holding green assets range from ESG
indifference to the most ESG perceptive. Second, each agent can purchase costly signals
about random payoffs of risk factors, while some agents have a more favorable cost function.

In equilibrium, following Kacperczyk et al. (2016), active fund managers are agents who
possess a strictly positive amount of information. For the remaining participants (e.g.,
households and passive funds), the marginal cost of information exceeds the marginal benefit

1For perspective, global sustainable investment was US$ 22.8 trillion, accounting for 28% of all profes-
sionally managed assets in 2016.
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for each of the risk factors. Hence, they remain uninformed. Investors then form optimal
portfolios conditioned on their private signals. In the rational equilibrium, the market clears,
each investors’ beliefs about the distribution of all observable variables are fulfilled, and the
price depends on information through matching the demand for risky assets and the supply.

The model generates a set of predictions for the universe of active funds and individual
stocks. In the first, an essential condition for ESG-induced information acquisition is the
presence of dispersion in fund ESG preferences and asset ESG attributes. With such hetero-
geneities, the fund’s signal precision improves with the departure of its own ESG preference
from the aggregate, and the departure of the underlying assets’ ESG attributes from green
neutrality. Moreover, the size of the active fund industry rises due to sustainable investing.
In particular, while ESG-perceptive (ESG-indifferent) funds acquire more information on
green (brown) assets and less on brown (green), overall, there is more information purchased
in equilibrium due to ESG motives. The increase in the signal precision (average across funds
and assets) is proportional to the product of cross-fund dispersion in ESG preferences and
cross-asset dispersion in ESG attributes, and it positively interacts with managerial skills.
That is, when fund managers are more skilled, their ESG-induced signal precision improves.

Regarding the optimal policies, it is shown that mutual funds overweight assets with more
precise signals and compatible ESG profiles. Thus, ESG-perceptive (ESG-indifferent) funds
overweight green (brown) stocks, with the portfolio tilts more pronounced for low-volatility
stocks. Notably, the optimal fund policies could significantly differ due to ESG motives.
That is, enforcing an ESG-perceptive fund to adopt the optimal information and portfolio
policies of an ESG-indifferent fund could lead to substantial utility losses.

The model also indicates that dispersion in portfolio holdings and tracking error increase
when the assets held by the fund depart from green neutrality, and when the fund’s ESG
preferences depart from the aggregate. Moreover, fund performance is jointly determined
by ESG considerations and managerial skills. As in Pástor et al. (2021), accounting for
ESG preferences while muting skills, a passive ESG-perceptive (ESG-neutral) fund would
deliver a negative (positive) alpha due to overweighting lower (higher) expected return green
(brown) stocks. Accounting for skills, the integration of sustainable investing and information
decisions leads to nontrivial effects on the optimal strategies of stock holdings. In response,
the alpha spread between identically skilled ESG-perceptive and ESG-indifferent funds could
be nonzero, even controlling for an ESG benchmark that prices passive investments.
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Moving to individual stocks, we make two major predictions. The first characterizes the
cross-section of asset prices. Information decisions deepen (weaken) the negative relation
between the expected net payoff and the ESG rating for green (brown) assets. Specifically,
the expected net payoff for green assets is lower due to two forces: (i) the nonpecuniary
benefits from holding green investments, and (ii) the lower posterior variance of the green
asset payoff due to higher signal precision. For brown assets, the two forces work in opposite
directions (with the nonpecuniary channel likely to dominate based on calibration). Second,
price informativeness improves for assets whose ESG profiles depart from green neutrality
and whose mutual fund investors display higher dispersion in their ESG preferences.

We empirically test the model based on the universe of actively managed U.S. equity
mutual funds and common stocks from 2001 to 2019. We collect monthly ESG rating data
from three data vendors, i.e., MSCI KLD, MSCI IVA, and Sustainalytics, and compute the
average rank across the raters to obtain the firm-level ESG rating. We then compute the
fund-level ESG rating as the investment value-weighted average of the stock ESG ratings in a
fund’s most recently reported holding portfolio. ESG-perceptive (i.e., green) funds and ESG-
indifferent (i.e., brown) funds are classified based on the ESG profiles of their stock holdings.
While green (brown) funds naturally invest more in green (brown) stocks, we confirm the
model prediction that both types of funds invest less in their preferred investment universe
as the idiosyncratic volatility (or the total volatility) of the investable assets rises.

The evidence also shows that both portfolio dispersion and tracking error increase when
funds hold assets that depart more substantially from green neutrality. For instance, a one-
standard-deviation increase in the departure from green neutrality is associated with 37.4%
higher portfolio dispersion and 14.0% higher tracking error. The analysis thus supports the
model prediction that ESG considerations play an essential role in shaping fund managers’
information decisions and investment strategies. That is, when mutual funds invest in stocks
with more extreme ESG profiles, they are more likely to adopt distinct trading strategies and
deviate from a benchmark, possibly due to their enhanced information acquisition activities.

We then test the implications for individual stocks. We employ green (brown) fund
ownership, labeled Green IO (Brown IO), as a proxy for the information acquisition intensity
for green (brown) stocks. We first sort stocks into quintile portfolios based on their green
fund ownership. Within each green fund ownership group, we further sort stocks into quintile
portfolios according to their ESG ratings. While equilibrium theory predicts a negative
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relation between the ESG rating and expected return due to the nonpecuniary benefits of
holding green stocks, Pástor et al. (2022) document that U.S. green stocks outperform brown
stocks in realized returns during the last decade due to an unexpected shift in investors’ tastes
for green holdings. Therefore, we divide the full sample into two subperiods, i.e., January
2001–October 2012 and November 2012–December 2019, following Pástor et al. (2022).

The first subperiod provides a cleaner setting to analyze equilibrium asset pricing implica-
tions. Over that period, the negative ESG-return relation holds only among stocks with high
green fund ownership, because green stocks are associated with lower expected returns in the
presence of information acquisition. In contrast, the negative return predictability of ESG
ratings does not hold for the remaining firms. The high-Green-IO, high-ESG stocks gener-
ate a significant CAPM alpha of −0.280% per month and underperform the high-Green-IO,
low-ESG stocks by 0.578% per month, while other high-ESG stocks deliver a higher payoff.

In a similar double-sort setting, first by brown fund ownership and then by stock ESG
ratings, we document a significantly negative ESG-return relation among stocks with low
brown fund ownership, and the negative return predictability of ESG ratings can be at-
tributed to the outperformance of brown stocks. The negative return predictability of ESG
ratings does not hold for most remaining firms. The low-Brown-IO, low-ESG stocks generate
a significant CAPM alpha of 0.423% per month and outperform low-Brown-IO, high-ESG
stocks by 0.569% per month, while other low-ESG stocks deliver a lower payoff.

Considering the implied cost of capital (ICC) as an alternative proxy for expected return,
we confirm that green stocks exhibit lower ICC than brown stocks in both subperiods. No-
tably, the negative ESG-ICC relation is more pronounced among stocks with high green fund
ownership and low brown fund ownership. Among high-Green-IO (low-Brown-IO) stocks,
green stocks display 0.149% and 0.108% (0.061% and 0.078%) lower ICC per month than
brown stocks in the first and second subperiods, respectively. The ICC spread between green
and brown stocks is smaller in absolute magnitude and often statistically insignificant for the
remaining firms. Overall, the empirical evidence supports the prediction that information
decisions deepen (weaken) the negative ESG-return relation for green (brown) assets.

The empirical findings about price informativeness are also consistent with the proposed
equilibrium. Stocks with substantial departure from green neutrality and those held by funds
with more heterogeneous ESG preferences display higher price informativeness. To illustrate,
a one-standard-deviation increase in the departure from green neutrality (heterogeneity in

4



ESG preferences) is associated with 26.3% (41.4%) higher price informativeness in the next
year. The effects are also robust for longer horizons. Thus, sustainable investing not only
provides capital to green firms but also improves the efficiency of the financial market due
to information acquisition. The overall evidence supports the notion that asset managers
consider ESG motives in making their information and portfolio policies, which subsequently
affect the cross-section of asset prices and price informativeness of the financial market.

Beyond the empirical tests, we conduct calibration exercises to further quantify the model
implications. We show that an ESG-perceptive fund encounters a large certainty equivalent
loss if enforced to adopt the information decision and portfolio strategy that are optimal for
an ESG-indifferent fund. The utility loss is exclusively attributed to the loss of nonpecuniary,
rather than monetary, benefits. Second, by using the industry-wide information acquisition
cost as a proxy for the size of the active fund industry, we find that the total information
cost increases considerably due to ESG motives. Looking forward, the scope of the active
management industry could grow with greater dispersion in the sustainability profiles of
investable assets or higher dispersion in the preferences for sustainable investing.

This paper contributes to several strands of the literature. First, we further develop
the information acquisition literature. Grossman and Stiglitz (1980) consider informed and
uninformed agents who trade for their own accounts. Ross (2005) recognizes the possibility
that the informed could offer wealth management services to the uninformed. That insight is
adopted by Garcia and Vanden (2009) and Gârleanu and Pedersen (2018). Our framework is
more closely related to Kacperczyk et al. (2016), who study the rational attention allocation
of mutual funds. For instance, we follow their innovative approach that information decisions
focus on risk factor payoffs. However, there are differences in the overall model and focus.
In our setting, information is costly to acquire while equilibrium obtains when the marginal
cost of information pars with the marginal benefit. Moreover, we emphasize the implications
of ESG motives for both the active fund industry and the intermediary asset pricing.

Second, the paper is also associated with the growing literature on the asset pricing
implications of sustainable investing. While theoretical work makes the premise that ESG-
perceptive investors are willing to sacrifice financial payoffs for nonpecuniary benefits (e.g.,
Heinkel et al., 2001; Berk and van Binsbergen, 2021; Pástor et al., 2021; Pedersen et al.,
2021; Avramov et al., 2022; Goldstein et al., 2022), there is mixed empirical evidence based
on different ESG proxies (e.g., Gompers et al., 2003; Hong and Kacperczyk, 2009; Edmans,
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2011; Bolton and Kacperczyk, 2021; Pedersen et al., 2021). Our model identifies a novel effect
of sustainable investing: green firms can benefit from a lower cost of capital due to (i) the
nonpecuniary benefits of holding green stocks, as proposed in prior literature and (ii) lower
risk due to the information acquired by ESG-perceptive mutual funds. Thus, greener firms
can make more socially responsible investments and generate higher social impact. Our
empirical results confirm this prediction and show that the negative ESG-return relation
mostly characterizes stocks with high green fund ownership and low brown fund ownership.

Finally, the paper is related to recent work on sustainable investing by institutional
investors (e.g., Amel-Zadeh and Serafeim, 2018; Dyck et al., 2019). While existing work
focuses on ESG scores as the driving force of sustainable investing, we expand this line of
research by considering the departure of asset ESG attributes from green neutrality and the
departure of fund ESG preferences from the aggregate. Both quantities are motivated in
equilibrium, and supported by empirical tests based on a comprehensive sample of funds.

The remainder of this paper proceeds as follows. Section 2 presents the model. Section
3 describes the data. Section 4 empirically examines how ESG motives affect mutual fund
investments. Section 5 tests the implications for individual stocks. Section 6 calibrates the
model and explores its quantitative implications. The conclusion follows in Section 7.

2 Model

2.1 The economy

We start with the supply side of the economy. Following Kacperczyk et al. (2016), there
are N investable risky assets whose payoffs load on N risk factors. The asset payoffs are
formulated as fi = µi + bizN + zi, i ∈ {1, . . . , N − 1}

fN = µN + zN ,
(1)

where fi, µi, and zi, are the realized payoff, the expected value of the payoff, and the
corresponding (demeaned) risk factor payoff, respectively. The N -th security represents a
composite asset with a payoff that is driven only by the aggregate risk factor, where the
mean payoff is given by µN and the shock is represented by zN . The slope coefficient bi
stands for the asset exposure to the aggregate risk factor. It is assumed that zi ∼ N (0, σi)
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for both the individual and the composite assets, and moreover the shocks are uncorrelated.
Information decisions focus on risk factor payoffs. The risk factor supply is modeled as

X̄i + Xi, where X̄i is the mean supply and Xi is assumed to obey the normal distribution,
Xi ∼ N (0, σX ). The random supply formulation aims to preclude the possibility that asset
prices fully reveal the private signals. Then, there is a wedge in asset valuations across
agents.2 Considering the universe of investable assets, the implied supply is x̄i + xi, where
x̄i = X̄i − biX̄N is the mean supply and xi is a random draw from the normal distribution
with zero mean and variance equal to σX (1 + b2i ). To ease notation, the gross interest rate
and the mean supply of each of the risk factors are all normalized to unity, while the Online
Appendix A re-derives the setting for a generic interest rate and mean supplies.

From the perspective of sustainable investing, each of the risky assets has exogenous ESG
attributes represented by the score gi. Green (brown) assets have positive (negative) ESG
scores. The ESG profile of the i-th risk factor is then given by Gi = gi − bigN for i ̸= N and
GN = gN . We assume that the composite asset is green neutral, namely, gN = 0. Then, the
ESG profile of the i-th risk factor is identical to that of the i-th risky asset, that is, gi = Gi.
Empirically, the true color of the market is unobserved, and moreover, corporate ESG ratings
are ordinal in nature. Thus, it is innocuous to assume that the composite asset indicates
the cutoff between green and brown investments. To distill the incremental implications of
sustainable investing, we remain agnostic about the possible dependencies between the asset
ESG score and other attributes known to predict the cross-section of expected returns.

Moving to the demand side, it is assumed that the economy is populated by a continuum
of risk-averse optimizing agents, which are indexed by j. As we show later in the text, in
equilibrium, some agents are active funds, while others are passive funds or households. Each
agent can purchase up to N costly signals about the random risk factor payoffs. A signal for
an asset-agent pair is modeled as

ηij = zi + εij, εij ∼ N
(
0, S−1

ij

)
, (2)

where Sij denotes the signal precision of risk factor i, optimally selected by agent j. Following
the literature, the cross-agent average of εij is assumed to be zero for each of the risk factors.

2Random supply can be motivated through the presence of noise traders, trading triggered by life-cycle
liquidity forces, and lack of perfect knowledge of the market structure. See, e.g., Admati (1985).
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It is further assumed that individual agents have mean-variance preferences, which are
given by

Uj (Wj, Gj, S1j, S2j, . . . , SNj) = E [Wj]−
ρ

2
Var [Wj] + δjE [Gj] , (3)

where ρ is the risk aversion parameter, δj represents the preference for holding green assets
(with a higher value reflecting stronger preference), Gj =

∑N
i=1 qijgi is the ESG score of

the portfolio, qij denotes the portfolio position for the asset-agent pair, Wj stands for the
agent’s terminal wealth that satisfies the budget constraint Wj = W0j +

∑N
i=1 qij (fi − pi)−∑N

i=1 cij (Sij), pi is the price of the risky asset, and
∑N

i=1 cij (Sij) is the total cost of infor-
mation acquisition, with cij (Sij) standing for the cost per risk factor i. The ESG preference
parameter δj is assumed to be nonnegative and strictly positive for a nonzero measure of
the agents in the economy. The term δjE [Gj] represents the expected nonpecuniary benefits
from ESG investing. The expectation operator appears because the portfolio weights are
formed based on random realizations of signals and asset supplies.

Accounting for ESG preferences directly in the investors’ utility function is motivated by
Pástor et al. (2021) in their study of ESG equilibrium. In addition, ESG preferences are
likely to vary across different types of investors. For instance, Avramov et al. (2022) show
that norm-constrained institutions such as pension funds favor green stocks, while hedge
funds invest more heavily in brown stocks.

We turn to modeling the cost of information acquisition. The cost function reflects
stock picking skills and is given by a continuous function cij (s) defined for s ≥ 0, where
cij (0) = 0. As in Verrecchia (1982), the cost is assumed to be increasing and convex in the
signal precision s. Furthermore, the signal precision Sij is assumed to be nonnegative; thus,
it is infeasible to forget information about one risk factor to enhance the set of information
about other factors (see also Van Nieuwerburgh and Veldkamp, 2009, 2010).

The cost function is agent-dependent because distinct agents may possess various degrees
of information processing skill. This is supported by the empirical evidence (e.g., Chevalier
and Ellison, 1999; Berk and van Binsbergen, 2015; Gerakos et al., 2021) and considered in
the equilibrium setting of Gârleanu and Pedersen (2018). The cost is also stock-specific,
which is consistent with the notion that fund managers can gain an informational advantage
about specific firms through industry expertise (Kacperczyk et al., 2005; Avramov and Wer-
mers, 2006), the information flows within financial conglomerates (Irvine et al., 2006; Massa
and Rehman, 2008), and social connections (Cohen et al., 2008). From the perspective of
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sustainability investing, in the absence of compelling evidence on how the information cost
(or managerial skill) varies with the fund’s tendency to hold green assets or with the ESG
profile of an investable asset, we remain agnostic about such potential dependencies.

While the overall setting is static, the actions and realizations appear in a sequence that
spans four periods. In period 0, agents are endowed with both the initial wealth and the
cost function.3 In period 1, each agent undertakes an information acquisition decision that
translates into the precision of multiple signals with respect to the risk factor payoffs. As we
show below, information decisions depend on both the ESG profile of the particular asset
and the agent-specific cost function and preference for holding sustainable assets. Signals are
realized at the end of period 1. In period 2, optimal portfolios are formed based on moments
that condition on the signals, and the asset prices and trading volumes are set. In period 3,
asset payoffs are delivered and utilities are realized. In the following, we provide the details.

2.2 Active asset management when ESG matters

We derive the equilibrium prices and optimal signals through backward induction. We first
formulate the portfolio allocation in period 2 conditional on the optimal signal realized in
period 1, and then solve for information acquisition decisions in period 1.

In period 2, each of the optimizing agents chooses the portfolio that maximizes the mean-
variance utility

U2j (Wj, Gj, S1j, S2j, . . . , SNj) = E2j [Wj]−
ρ

2
Var2j [Wj] + δjGj, (4)

subject to the budget constraint, where E2j [.] and Var2j [.] denote the expectation and vari-
ance conditional on the information available in period 2 including the realizations of the
signals acquired in period 1, respectively.

The period-2 prices are set by market clearing: the sum of the individual stock (risk
factor) positions is equal to the supply of stocks (risk factors). The proposition below
provides the details (the proof is shown in Online Appendix A.1).

3For perspective, in Grossman and Stiglitz (1980), agents are ex ante identical. Then, a fraction of agents
purchases information, and this fraction is set in equilibrium, such that the expected utility of the informed
is equal to that of the uninformed. In Hellwig (1980), and a large body of follow-up work, agents are endowed
with varying degrees of information; hence, some agents have informational advantages over others, ex ante.
In our setting, informational advantages come into play through a more favorable cost function.
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Proposition 1. The price of a risky asset is given by

pi = µi + ζizi + biζNzN − ρ (σ̄i + biσ̄N)︸ ︷︷ ︸
cross-agent risk-adjusted posterior payoff

− ρ

(
ζi
S̄i

xi + bi

(
ζi
S̄i

+
ζN
S̄N

)
xN

)
︸ ︷︷ ︸

random supply component

+ δ̄igi︸︷︷︸
nonpecuniary

motives

, (5)

where S̄i =
∫
j
Sijdj represents the cross-agent average signal precision per risk factor i,

δ̄i = σ̄i
∫
j
σ̂−1
ij δjdj is the aggregate asset-specific ESG preference, σ̂−1

ij = σ−1
i + Sij + σ−1

pi

stands for posterior payoff precision, as perceived by agent j, σ̄−1
i = σ−1

i + S̄i + σ−1
pi is the

corresponding cross-agent average, ζi =
S̄i+σ−1

pi

σ̄−1
i

is the fraction of the posterior payoff precision

attributed to the price and private signals, and σ−1
pi =

S̄2
i

ρ2σX
is the precision of the price signal.

The asset price increases with the cross-agent posterior payoff, adjusted for risk, while
it diminishes with the random supplies of the asset-specific and aggregate risk factors, xi
and xN . From the perspective of sustainable investing, the green (brown) asset price rises
(falls) with the nonpecuniary motives. Indeed, the stock ESG profile and the preferences for
holding green assets are important determinants of the cross-section of asset pricing and price
informativeness, which we comprehensively analyze in Subsections 2.4 and 2.5, respectively.
At this stage, we focus on understanding active management when ESG matters.

We proceed by deriving the optimal information decisions. In period 1, each agent chooses
the precision of multiple signals to maximize4

U1j (Wj, Gj, S1j, S2j, . . . , SNj) = E1j

[
E2j [Wj]−

ρ

2
Var2j [Wj] + δjGj

]
. (6)

The proposition below, which we prove in Online Appendix A.2, describes the signal precision
for the asset-agent pair that maximizes the expected utility in period 1.

Proposition 2. The optimal signal precision Sij is given by

Sij = max
[
0, s|c′ij (s) = ψij

]
, (7)

4Van Nieuwerburgh and Veldkamp (2010) show that maximizing E1j

[
E2j [Wj ]− ρ

2Var2j [Wj ]
]

is equiva-
lent to maximizing the time-1 expectation of the time-2 certainty equivalent for an investor endowed with
constant absolute risk aversion utility, i.e., E1j

[
−ρ−1 log

(
E2j

[
e−ρWj

])]
.
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where the pre-cost marginal benefit of information acquisition is

ψij =
1

2ρ

(
σ̄i +

(
ρ2σX + S̄i

)
σ̄2
i +

(
ρσ̄i +

(
δj − δ̄i

)
gi
)2)

. (8)

Equilibrium information decisions are obtained as the solution to a fixed-point problem.
The signal precision in Equation (7) depends on the marginal benefit of information in
Equation (8), which in turn depends on the aggregate signal precision via S̄i, σ̄i, and δ̄i.

For some agents, the equilibrium marginal benefit exceeds the marginal cost of buying
an infinitesimal unit of information, c′ij (Sij), for at least one risk factor. These agents would
purchase a strictly positive amount of information, inversely associated with the convexity of
their cost function. For other agents, the benefit-cost gap is nonpositive for all risk factors.
These agents remain uninformed. The agents purchasing information are active mutual
funds, while the uninformed are the households or the passive mutual funds.

As evident from Equations (7) and (8), beyond the essential (positive) dependence of
the signal precision on managerial skills, information decisions also vary with the asset sus-
tainability profile as well as with the individual and aggregate preferences for sustainable
investing. ESG motives come into play through the

(
δj − δ̄i

)
gi term in Equation (8). Intu-

itively, ESG-perceptive mutual funds (δj > δ̄i) attribute higher valuations to green assets.
Thus, they would make information decisions to improve their knowledge about green asset
payoffs. Conversely, ESG-indifferent funds (δj < δ̄i) would be reluctant to pay the extra
premium associated with green investing. Thus, they are likely to specialize in brown stocks,
which incentivizes costly searches for brown asset payoffs. We formalize this intuition below.

For the remainder of this subsection, to analyze the implications of ESG motives for
signal precisions, we control for managerial skills by considering a cost function that is
identical across stocks and agents, and further make several simplifying assumptions. It is
first assumed that the information cost is proportional to the square of the signal precision,
i.e., cij (s) = κs2 with κ > 0. This cost function implies that each individual agent purchases
information in equilibrium. It is then assumed that asset payoffs have identical posterior
variances (σi = σ̄) and the aggregate ESG preferences are identical across assets (δ̄i = δ̄).

Then, let ˆ̄SESG be the component in the average (across agents and assets) signal pre-
cision, ˆ̄S =

∑N
i=1

(∫
j
Sijdj

)
, explicitly associated with ESG considerations. It follows that
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(the derivation is shown in Online Appendix A.3):

ˆ̄SESG =
σδσg
4κρ

, (9)

where σδ denotes the cross-agent variance of ESG preferences and σg stands for the cross-
stock variance of ESG scores. The analysis suggests that ESG motives contribute to the
overall size of the active fund industry, as they lead mutual funds to purchasing incremental
information in equilibrium. ESG-induced information acquisition only applies in the presence
of cross-asset dispersion in ESG attributes and cross-fund dispersion in ESG preferences. The
incremental information positively interacts with managerial skills. In particular, when the
fund managers are more skilled (lower κ), the ESG-induced signal precision improves.

We also attempt to study how the fund signal precision varies with the fund ESG pref-
erence and how the asset signal precision varies with the asset ESG profile. The fund signal
precision is defined as the cross-asset average of the signal precision, Ŝj =

1
N

∑N
i=1 Sij, and

the asset signal precision, S̄i, is defined in Proposition 1.
We show in Online Appendix A.4, that the sensitivity of the fund signal precision to the

departure of its ESG preference from the aggregate,
∣∣δj − δ̄

∣∣, is given by

∂Ŝj

∂
∣∣δj − δ̄

∣∣ = ξFσg
∣∣δj − δ̄

∣∣ , (10)

where ξF = (2ρκ)−1 > 0. Thus, in the presence of cross-asset dispersion in the ESG profile
(σg > 0), the departure of the fund ESG preference from the aggregate determines the
sensitivity of the signal precision to the preference for holding green stocks. As the preference
of an above-average ESG-perceptive investor rises, the average signal precision improves.
Likewise, for a below-average ESG investor, as the preference for ESG investing diminishes,
the average signal precision also improves.

The tractability of the derivative expression in Equation (10) is useful for illustrating how
accounting for potential heterogeneities in managerial skills affects the implications of ESG
motives for an individual fund. In particular, consider two funds with identical preferences
(above the aggregate) for holding green stocks but different skills in stock picking. It follows
that the more skilled (lower κ) fund would further improve the signal precision of green asset
payoffs due to ESG motives.
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Next, the sensitivity of the asset signal precision to the departure of the asset ESG score
from green neutrality, |gi|, is given by (Online Appendix A.5 provides the details)

∂S̄i

∂ |gi|
= ξAiσδ |gi| , (11)

where ξAi =
(
ρκ+

((
ρ2 (1 + σX ) + S̄i

) (
1 + 2S̄i

ρ2σX

)
σ̄i +

S̄i

ρ2σX

)
σ̄2
i

)−1

> 0 for all assets. That
is, in the presence of cross-fund dispersion in ESG preferences (σδ > 0), the signal precision
increases with the asset’s departure from green neutrality (either green or brown). Thus,
signal precisions would improve for assets that display more extreme ESG attributes.

In summary, ESG-perceptive funds attribute higher valuations to green assets. Thus,
they acquire more information about green stocks and less about brown. Conversely, ESG-
indifferent funds are likely to specialize in brown stocks, and they conduct more costly
searches for brown asset payoffs and less for green. Still, the overall information purchased in
equilibrium increases due to ESG motives, while the signal precision improves more strongly
for assets whose ESG profiles display more substantial deviation from the average.

2.3 Stock holdings, tracking error, and performance

The mutual fund preference for ESG investing also affects its (i) stock holdings, (ii) tracking
error, and (iii) net payoff in excess of the market. First, we describe the optimal portfolio
and its expected ESG profile (the proof is shown in Online Appendix A.6).

Proposition 3. The expected ESG tilt of the fund’s optimal portfolio relative to the market
is given by

E [qij − q̄i] = ∆Sijσ̄i +
(
σ̄−1
i +∆Sij

) ∆δij
ρ

gi, i = 1, . . . , N − 1 (12)

E [qNj − q̄N ] = ∆SNjσ̄N −
N−1∑
i=1

biE [qij − q̄i] , (13)

where q̄i =
∫
qijdj, ∆δij = δj − δ̄i, and ∆Sij = Sij − S̄i. The expected ESG score of the

portfolio is

E [Gj] =
N−1∑
i=1

(
∆Sijσ̄igi +

(
σ̄−1
i +∆Sij

) ∆δij
ρ

g2i

)
. (14)
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The first component in Equations (12) and (13) reflects the notion that agents overweight
assets characterized by signals that are more precise than the average (∆Sij > 0). Then, per
Equation (12), agents who are more ESG perceptive than the average (∆δij > 0) overweight
green assets. The degree of overweighting increases with the total signal precision, σ̄−1

i +

∆Sij. Agents with ∆δij < 0 would implement the opposite strategy, underweighting green
assets. Turning to the expected ESG profile of the optimal portfolio in Equation (14), the
composition of stocks is obviously greener for ESG-perceptive agents. Importantly, this effect
intensifies with increasing precision of the signal (∆Sij) and with increasing preference for
sustainable investing (∆δij).

To derive an intuitive, more easily interpretable, expression for the expected spread in
stock holdings between green and brown funds, we consider the following simplified setting.
First, the economy consists of ESG-perceptive and ESG-indifferent funds with preference
parameters δP > 0 and δI = 0, respectively. Second, funds can invest in two assets, green
and brown, with scores ggr = ḡ > 0 and gbr = −ḡ and with identical posterior variances, i.e.,
σ̄gr = σ̄br = σ̄. Third, for the green asset, the ESG-perceptive fund receives a signal with
precision S̄ + ∆S, while the ESG-indifferent fund receives a signal with precision S̄ − ∆S.
For the brown asset, the corresponding signal precisions are S̄−∆S and S̄+∆S. The signal
precisions reflect the inference from Proposition 2 that ESG-perceptive (ESG-indifferent)
funds acquire more information about green (brown) asset payoffs. Finally, the groups of
funds are equal in size. Then, the expected spread in portfolio positions is given by

E [qgrP − qgrI ] =
δP ḡ

ρσ̄
+

2∆S

σ̄−1
. (15)

The expected spread consists of two components. The first describes the ratio between
two determinants of expected asset returns—the nonpecuniary motive of the ESG-perceptive
fund, δP ḡ, and the monetary item, ρσ̄.5 As the nonpecuniary benefits become more pro-
nounced, the expected portfolio spread increases. The second component describes the
cross-fund difference in the signal precision, normalized by the posterior precision. Essen-
tially, ESG-perceptive funds would overweight green stocks with higher signal precision,
while underweight brown stocks, with stronger underweighting for lower-volatility stocks.6

5We derive the components of expected net asset payoffs in the next subsection.
6Observe from Equation (15) that the sensitivity of the expected portfolio spread to σ̄ is ∂E[qgrP−qgrI ]

∂σ̄ =
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Because our derivations characterize the implications of optimal information and portfolio
policies, an essential question arises: do optimal policies of the green and brown funds
materially differ? To answer this question, we derive the expected utility loss perceived by an
ESG-perceptive fund that is forced to employ the optimal information and portfolio decisions
of an ESG-indifferent fund. To our knowledge, Geczy et al. (2021) are the first to assess the
utility losses associated with socially responsible investing. Relative to their optimization
experiments, we derive the utility loss based on our proposed equilibrium. Notably, the
utility losses reported in a large body of past work are based on symmetric information.
Then, the value function is evaluated at the deterministic optimal and suboptimal portfolio
strategies. The utility loss is the gap between the evaluated utility measures.

With information acquisition, the value function depends on both the precision of multiple
signals and the stochastic strategy that conditions on the signal realizations. Given the
complexity of the utility loss expression, we leave the technical details to Online Appendix
A.7. We assess the utility loss using calibration experiments, and confirm that the expected
loss, which is attributable exclusively to nonpecuniary motives, can be substantial. For
instance, the loss can exceed 20% of the expected net fund payoff.

As optimal policies could differ significantly, we proceed to derive the implications of
ESG motives for dispersion in stock positions, tracking error, and fund performance. The
portfolio dispersion is defined as the sum of the squared distances of the individual equity
positions relative to the market portfolio: Dispj = E

[∑N−1
i=1 (qij − q̄i)

2
]
. The dispersion in

portfolio positions induces a tracking error for the optimal portfolio relative to the market.
The tracking error is defined as the variance of the difference between the portfolio returns
and the market returns: TEj = Var

[∑N
i=1 (qij − q̄i) (fi − pi)

]
. The proposition below (the

proof is shown in Online Appendix A.8) states the determinants of portfolio dispersion and
tracking error.

Proposition 4. The ESG-induced dispersion of portfolio positions across individual assets

− δP ḡ
ρσ̄2 + 2∆S, where the first term is negative and strongly dominant for reasonable parameter values. For

perspective, according to our calibration results (see Section 6), the first term is equal to −36.82, while the
second term is 0.11, leading to ∂E[qgrP−qgrI ]

∂σ̄ ≈ −36.71.
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(i = 1, . . . , N − 1) is given by

Dispj =
1

ρ2

N−1∑
i=1

(
Sij +∆S2

ijVii +
(
ρσ̄i∆Sij +

(
σ̄−1
i +∆Sij

)
∆δijgi

)2)
, (16)

where Vii = σ̄i
(
1 +

(
ρ2σX + S̄i

)
σ̄i
)

is the unconditional variance of the net payoff of risk
factor i. The tracking error of the optimal portfolio is given by

TEj =
1

ρ2

N∑
i=1

((
(ρσ̄i)

2 + Vii
)
Sij + 2 (Vii∆Sij)

2

+
(
2ρσ̄i∆Sij +

(
σ̄−1
i +∆Sij

)
∆δijgi

)2
Vii

)
. (17)

Each asset contributes to portfolio dispersion and tracking error through three compo-
nents. The first is associated with the signal realization and is present even when agents
have identical ESG preferences and identical signal precision (Sij). This is because a ran-
dom signal realized in period 1, even drawn from the same distribution, governs the optimal
portfolio of period 2. The second component is driven by the squared difference between
the agent’s signal precision and the average market-wide precision, ∆S2

ij. When an agent
observes signals that are either more or less precise than the average signal, the optimal
portfolio would depart more substantially from the market portfolio. The third component
reflects the interaction between the monetary and the nonpecuniary components, where
ρσ̄i∆Sij and

(
σ̄−1
i +∆Sij

)
are risk-based components related to differential signal precision

(∆Sij), and ∆δijgi indicates the differential nonpecuniary benefits induced by the differential
ESG preference (∆δij) and ESG profile (gi).

Then, combining the expressions in Propositions 2 and 4, the analysis shows that portfolio
dispersion and tracking error increase when the assets held by the funds depart from green
neutrality, when the fund’s ESG preference departs from the aggregate, and when the market-
wide heterogeneity in ESG preferences widens.

Regarding performance, we compute the excess fund payoff, closely associated with al-
pha, following Kacperczyk et al. (2016), as EENPj = E

[∑N
i=1 (qij − q̄i) (fi − pi)

]
. The

proposition below (the proof is shown in Online Appendix A.9) provides the details.
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Proposition 5. The conditional expected net payoff in excess of the market is given by

EENPj =
N∑
i=1


((
ρσ̄i − δ̄igi

)
σ̄i +

1

ρ
Vii

)
∆Sij

+
1

ρ

(
ρσ̄i − δ̄igi

) (
σ̄−1
i +∆Sij

)
∆δijgi

 . (18)

For perspective, we first consider the case of passive fund management. Abstracting from
ESG considerations, the return spread between a passive fund and the market is equal to zero,
because ∆δij = 0 and ∆Sij = 0 for all assets and funds. Accounting for ESG preferences,
a passive ESG-perceptive fund (∆δij > 0) would overweight green assets, characterized by
an equilibrium expected net payoff, ρσ̄i − δ̄igi, that is lower. Conversely, brown assets,
characterized by a higher expected net payoff, would be underweighted. Thus, the fund
would deliver a negative expected excess net payoff. Similarly, a passive ESG-indifferent
fund (∆δij < 0) would generate a positive payoff. The analysis on passive funds reflects
inference from the symmetric information setting (e.g., Heinkel et al., 2001; Berk and van
Binsbergen, 2021; Pástor et al., 2021; Pedersen et al., 2021; Avramov et al., 2022).

In the presence of managerial skills, an active ESG-perceptive fund can either underper-
form or outperform the market, depending upon the strength of its skills. In other words,
the incremental positive expected return due to managerial skills, captured by the first term
in Equation (18), can partially or fully offset the return reduction that is attributable to
holding green assets. Moreover, controlling for the amount of information acquired, i.e.,
fixing ∆Sij across agents and assets, ESG-indifferent funds would deliver higher expected
returns relative to ESG-perceptive funds.

We note that Proposition 5 focuses on the expected net payoff in excess of the market,
while our calibration experiments, reported below, suggest that the main results also apply
to the CAPM alpha. Hence, when evaluating fund performance in the presence of ESG
motives, a higher alpha may not indicate superior managerial skills. Instead, higher alpha
might merely point to an ESG-indifferent fund specializing in higher expected return brown
stocks.

In fact, in the presence of information decisions, a long-short ESG-based asset pric-
ing factor may not eliminate the negative alpha spread between ESG-perceptive and ESG-
indifferent funds that are equally skilled. To illustrate this point, we again consider the
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simplified setting that forms the basis for Equation (15). Then, the spread in expected net
payoff between equally skilled ESG-perceptive and ESG-indifferent funds is given by

EENPP − EENPI = −δP ḡ
(
δP ḡ

ρσ̄
+

2∆S

σ̄−1

)
. (19)

The spread in Equation (19) is clearly negative, obtained by scaling the expected port-
folio spread in Equation (15) by the nonpecuniary motive. Hence, information acquisition
nontrivially affects portfolio strategies, so that the alpha spread between equally skilled ESG-
perceptive and ESG-indifferent funds can be nonzero. In particular, controlling for an ESG
benchmark that prices passive investments would only capture the first term in Equation
(19), while the second term is left unexplained.

2.4 The cross-section of asset payoffs

We are now ready to derive and interpret the cross-section of the expected net stock payoffs.
In particular, based on the price equations from Proposition 1, we express the expected net
payoffs as follows.

Proposition 6. The expected net payoffs for the composite and individual assets are

E [fN − pN ] = ρσ̄N , (20)

E [fi − pi] = biE [fN − pN ] + ρσ̄i − δ̄igi. (21)

According to Equation (20), the expected net payoff of the composite asset is equal to
the product of the risk aversion and the posterior variance of the payoff, conforming to the
CAPM-type representation, except that the valuation varies across agents, depending on the
amount of information purchased about the composite asset.7

Turning to individual stocks, Equation (21) formulates the cross-section of the expected
net payoffs in the presence of information acquisition and ESG motives. It extends Equation
(6) in Pástor et al. (2021) by considering financial intermediaries who might have preferences

7Equation (20) assumes that the market is green neutral. As highlighted in Avramov et al. (2022), in a
symmetric-equilibrium framework, when the market is not green neutral, there is an incremental component
in the expected net payoff to capture the utility of holding a green market (negative contribution to the
expected payoff) or the disutility of holding a brown market (positive contribution to the expected payoff).
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for holding green assets. The presence of intermediaries modifies the asset pricing equation
in two ways. The first is the asset-specific expected nonpecuniary payoff, captured by δ̄igi.
Specifically, δ̄i represents the weighted average of individual agents’ preferences for sustain-
able investing, with weights reflecting the precision of the posterior distribution of the payoff.
As ESG-perceptive agents are likely to acquire more information about green assets, higher
precision is associated with higher δj values for green assets. This suggests that δ̄i and gi

are positively correlated, reinforcing the negative relation between the ESG profile and the
expected net payoff due to the nonpecuniary benefits from green assets. For brown assets, a
negative relation also holds, but it is weakened relative to the symmetric information case,
as δ̄i diminishes when the asset becomes browner.

Second, the expected net payoff is directly affected by information acquisition decisions
through the posterior variance (σ̄i). As noted earlier, in the presence of cross-agent het-
erogeneity in ESG preferences, costly information acquisition is more pronounced for higher
values of green and brown, while no incremental acquisition applies to ESG-neutral assets.

Thus, the expected net payoff for green assets is lower due to two forces. The first is
associated with the nonpecuniary benefits from holding green investments. The second orig-
inates from the lower posterior variance of the payoff of a greener asset, which is attributable
to higher signal precision. Hence, the negative relation between the expected net payoff and
the ESG rating deepens for green assets.

For brown assets, the two forces work in opposite directions. On the one hand, as the asset
becomes browner, its expected payoff becomes higher due to the nonpecuniary channel. On
the other hand, the signal precision is higher, triggering a reduced expected payoff.8 Finally,
for ESG-neutral assets, no information acquisition or nonpecuniary benefits are attributed
to sustainable investing.

Equation (21) proposes an intermediary-based asset pricing model through the lens of an
information acquisition setting. He and Krishnamurthy (2018) suggest that intermediary-
based asset pricing builds on the presence of an intermediary sector and a household sector.
Some households do not directly invest in some intermediated assets, thus delegating their
investments to the intermediary sector. Intermediaries come into play in equilibrium due to

8An unreported calibration experiment suggests that, for reasonable parameter values, the nonpecuniary
channel dominates. Hence, by integrating through the forces, brown assets earn higher returns on average,
and the negative association between the ESG profile and the net expected payoff still applies.
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frictions: there is a wedge between the household and intermediary valuations of assets.
Note that the uninformed agents in our setting, the households, do not explicitly delegate

the informed to trade on their behalf. Instead the informed, the active funds, are proprietary
traders. Nevertheless, in the presence of informational heterogeneity, there is a wedge in the
valuation of securities between active funds and households. Thus, the informed investors
qualify to be intermediaries and moreover, they are likely to be the marginal traders in risky
assets.

Addressed from a different perspective, mutual funds in our setting can be viewed as a
collection of individuals who collaborate to share the cost of information acquisition. In-
vesting in complex assets requires the acquisition of costly information, making such assets
difficult to access for individuals. The possibility of sharing the information cost through
the formation of a fund allows pools of individuals to actively participate in trading risky
assets. Thus, the households in our setting implicitly delegate the active funds to trade on
their behalf.

2.5 The cross-section of price informativeness

We conclude the model section by exploring the cross-sectional relationship between price
informativeness and the ESG profile. We define the price informativeness for asset i as
PIi =

Cov[fi,pi]
Std[pi]

, following Bai et al. (2016) and Farboodi et al. (2022). The proposition below
provides the resulting expression for price informativeness.

Proposition 7. The price informativeness for asset i is given by

PIi =
σiζi + b2iσNζN√(

σi + ρ2 σX
S̄2
i

)
ζ2i + b2i

(
σN + ρ2 σX

S̄2
N

)
ζ2N

. (22)

As we show in Online Appendix A.10, the price informativeness of the risk factor is equal
to σi√

σi+ρ2σX /S̄2
i

. When the average signal precision of the risk factor, S̄i, approaches zero,

the risk factor price does not provide any information about the random payoff. In addition,
price informativeness monotonically increases with the average signal precision, converging
to

√
σi as S̄i grows arbitrarily large. Considering the price informativeness of a risky asset,

rather than that of a risk factor, the variation with the signal precision is based on a rather
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complex expression that we analyze through calibration and report later in the text. We
confirm the intuition that price informativeness grows when the average signal becomes more
precise.

Because the signal precision depends on the various components analyzed earlier, the
price informativeness improves for assets whose color departs (in both ways) from green
neutrality and whose mutual fund investors display more heterogeneous ESG preferences.

In what follows, we take the model to data. As elaborated in the introduction, the
model generates several testable predictions for both mutual funds and individual stocks. We
empirically test the model predictions and further use calibration to assess some quantitative
implications.

3 Data

3.1 Data sources

The sample of mutual funds consists of all U.S. actively managed equity mutual funds.
Quarterly institutional equity holdings are acquired from the Thomson-Reuters mutual fund
holdings database. The database contains quarter-end security holding information for all
registered mutual funds that are required to report their holdings to the U.S. Securities and
Exchange Commission (SEC). We match the holdings database with the Center for Research
in Security Prices (CRSP) mutual fund database, which reports monthly net-of-fee returns
and total net assets (TNAs), as well as other quarterly fund characteristics, such as the
turnover and the expense ratio. We consolidate multiple share classes into portfolios by
adding together share-class TNAs and by value weighting share-class characteristics (e.g.,
returns, fees) based on lagged share-class TNAs.

Equity funds are identified based on the objective codes from the CRSP following Kacper-
czyk et al. (2008). We exclude funds identified by the CRSP “index_fund_flag” as index
funds as well as funds whose name contains the following strings: “INDEX”, “IDX”, “IX”,
“INDX”, “NASDAQ”, “DOW”, “MKT”, “DJ”, “S&P”, “500”, “BARRA”, “WILSHIRE”, and
“RUSSELL”. The sample is further restricted to funds that have TNA of at least $15 million
to avoid the survivorship bias problem (see, e.g., Elton et al., 1996; Pástor et al., 2015),
and we exclude observations prior to the fund’s starting date reported by CRSP to prevent
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incubation bias (Evans, 2010). The mutual fund benchmark is defined based on the Primary
Prospectus Benchmark from the Morningstar mutual fund database.

The stock sample consists of all NYSE/AMEX/Nasdaq common stocks with share codes
10 or 11; daily and monthly stock data are obtained from the CRSP database. We collect
monthly ESG rating data from three data vendors: MSCI KLD, MSCI IVA (also known as
MSCI ESG Ratings), and Sustainalytics. These data providers represent the major players
in the ESG rating market, and their ratings are widely used by both practitioners and a
growing number of academic studies (e.g., Eccles and Stroehle, 2018). Quarterly and annual
financial statement data come from the COMPUSTAT database. Analyst forecast data are
provided by the Institutional Brokers’ Estimate System (I/B/E/S).

The full sample spans the period 2001 through 2019. The sample begins in 2001 when
MSCI KLD expanded coverage to Russell 1000 firms (Nofsinger et al., 2019) and institutional
investors display a growing preference for ESG investing during that period (Starks et al.,
2020). The final sample contains 4,761 unique equity funds and 5,744 unique stocks. On
average, there are 2,084 funds and 2,235 stocks per month.

3.2 Main variables

We start with the firm-level ESG rating from each data provider. For the MSCI KLD data,
we construct an aggregate ESG rating by summing all strengths and subtracting all concerns
(e.g., Lins et al., 2017). Since the MSCI KLD data end in 2016, we complement them with the
“ESG Rating” from MSCI IVA and “Total_ESG_Score” from Sustainalytics.9 ESG rating
agencies can differ in terms of their rating scale, e.g., MSCI KLD rating ranges from −11 to
+19 in our sample, MSCI IVA uses a seven-tier rating scale from the best (AAA) to the worst
(CCC), and Sustainalytics applies a scale from 0 to 100. To achieve comparability across the
rating agencies, we proceed as follows. For each rater-month, we sort all stocks according
to the original rating scale of the respective data provider and calculate the percentile rank
(normalized between −0.5 and 0.5) for each stock-rater. Then, for each stock, we compute
the average rank across all raters to obtain the firm-level ESG rating, labeled Stock ESG.10

9Our MSCI KLD, MSCI IVA, and Sustainalytics samples extend from 2001 to 2016, 2006 to 2019, and
2009 to 2019, respectively. Each data vendor covers an average of 2,242, 1,457, and 1,199 firms per month,
respectively, during the sample period.

10Using the average rank allows us to examine a longer sample period and a larger number of firms. It
also mitigates the concern that our results could be driven by the idiosyncrasies in a specific ESG rating,
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Next, we define the fund-level ESG rating as the investment value-weighted average of
Stock ESG in a fund’s most recently reported holding portfolio, labeled Fund ESG. To
capture the heterogeneous ESG preferences among mutual funds in stock investment, the
dispersion in ESG preferences for a stock, labeled Stock ESGDisp, is defined as the standard
deviation of the fund ESG rating of all funds that hold that stock. The standard deviation
is investment value-weighted to account for the relative importance of individual mutual
funds’ ESG preferences.11 Online Appendix Table B.1 provides a detailed definition for each
variable.

3.3 Summary statistics

We report the summary statistics in Table 1. Panel A reports the means, medians, standard
deviations, and quantile distributions of the monthly stock ESG ratings, rating dispersion,
and other stock characteristics. The average stock ESG rating is −0.006 with a standard
deviation of 0.253.12

Panel B reports similar statistics for the fund characteristics. Notably, the cross-sectional
statistics of the ESG ratings at the fund level are quite similar to those at the stock level.
The average fund ESG rating is −0.020 with a standard deviation of 0.271. In addition,
the fund ESG is −0.250 at the 25th percentile and 0.202 at the 75th percentile of the distri-
bution, indicating that mutual funds display dispersed preferences in ESG investing. This
further motivates us to investigate the role of heterogeneous ESG preferences across funds,
in addition to ESG levels such as firm ESG attributes and fund ESG preferences.

given the rating disagreement across different ESG data vendors (e.g., Avramov et al., 2022). In addition,
investors may rely on ESG ratings from different data vendors; therefore, the average rating provides an
approximate assessment of the perceived ESG profile among investors.

11Unreported analyses using equal-weighted standard deviation also confirm our findings.
12While we normalize the ESG ratings to be between −0.5 and 0.5 for the entire universe of covered firms,

the summary statistics only include stocks used in later analyses that require additional data regarding other
firm characteristics. Therefore, the average ESG rating is approximately zero (although not exactly zero),
and the distribution of the stock ESG ratings may slightly deviate from a uniform distribution.
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4 Mutual fund investment and performance

4.1 Stock holdings

The first prediction generated from the model is that ESG-perceptive (ESG-indifferent)
funds overweight green (brown) stocks, and the degree of overweighting increases with the
total signal precision (Proposition 3). In particular, the expected difference in portfolio
positions between ESG-perceptive and ESG-indifferent funds increases with the stock ESG
rating and signal precision and diminishes with return volatility, as formulated in Equation
(15). The model predicts that ESG-perceptive funds overweight green stocks, especially
those with low volatility. Similarly, ESG-indifferent funds overweight low-volatility brown
stocks. In the presence of high volatility or low signal precision, both types of funds demand
less risky assets in their preferred investment universe; hence, they are less affected by
ESG considerations. Therefore, return volatility should attenuate the positive relationship
between the stock ESG rating and the ownership gap, i.e., the difference in portfolio positions
between ESG-perceptive and ESG-indifferent funds.

Because mutual funds’ ESG preferences are not directly observed, we measure their re-
vealed preferences through the stocks they hold. We identify ESG-perceptive funds as those
holding greener assets (labeled green funds) and ESG-indifferent funds as those holding
browner assets (labeled brown funds).13 For each stock, we compute the percentage own-
ership from green funds and brown funds, as well as the spread between them. We then
estimate the following monthly Fama and MacBeth (1973) regression:

IOi,t = α + β1ESGi,t−1 + β2IV OLi,t−1 + β3ESGi,t−1 × IV OLi,t−1 + cNi,t−1 + εi,t, (23)

where IOi,t is the mutual fund ownership of stock i in month t, measured by green fund
ownership, brown fund ownership, and the difference in ownership between green and brown
funds. We identify green (brown) funds as those with a fund-level ESG rating in the top
(bottom) quintile across all funds at the end of each month. ESGi,t−1 is the ESG rating,

13Note that in the model, we separately consider funds’ ESG preferences (ESG-perceptive and ESG-
indifferent) and portfolio ESG scores (positive for green and negative for brown). In the empirical section,
we label ESG-perceptive funds as green funds and ESG-indifferent funds as brown funds for ease of definition.
In our context, brown funds are not necessarily averse to ESG investing. They could be ESG-indifferent,
thus optimally holding brown stocks due to their superior financial performance.
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and IV OLi,t−1 is the idiosyncratic volatility. Vector N stacks all other stock-level control
variables: the Log(Size), Log(BM), ROE, I/A, 1M Return, 12M Return, IO, Log(Illiquidity),
Log(Analyst Coverage), and Analyst Dispersion. Online Appendix Table B.1 provides a
detailed definition for each variable. We also report Newey and West (1987) adjusted t-
statistics.

Panel A of Table 2 presents the results. Several findings are worth noting. By con-
struction, the stock ESG rating is positively (negatively) associated with green (brown) fund
ownership. Then, consistent with the model prediction, idiosyncratic volatility is negatively
related to ownership from both types of funds. A one-standard-deviation increase in IVOL
is associated with 23.6% lower green fund ownership in Model 1 and 7.9% lower brown fund
ownership in Model 4 (scaled by the sample mean of the corresponding fund ownership).14

The impact of idiosyncratic volatility (i.e., low signal precision) on mutual fund ownership
is economically significant. For perspective, a one-standard-deviation increase in Stock ESG
is associated with 39.6% higher green fund ownership and 18.1% lower brown fund owner-
ship in Models 1 and 4, respectively (scaled by the sample mean of the corresponding fund
ownership). Hence, our findings reinforce the notion that both signal precision and ESG
considerations matter for mutual fund portfolio choices.

Next, we show that green (brown) funds invest less in green (brown) stocks in the presence
of high idiosyncratic volatility, as implied by the opposite signs of Stock ESG and Stock
ESG×IVOL in Model 2 (Model 5). Finally, while the ownership gap between green and
brown funds increases with stock ESG ratings (by construction), the positive ESG-ownership
gap relation attenuates when idiosyncratic volatility is high (Model 8).

Our findings are also robust to controlling for a comprehensive set of stock characteristics
(Models 3, 6, and 9). Consistent with the prior literature (e.g., Liang and Renneboog, 2017;
Dyck et al., 2019; Hsu et al., 2022), large, growth firms tend to have better ESG performance
and thus attract more green funds. In addition, green funds are more likely to hold stocks
with low profitability and past returns, possibly due to their nonpecuniary motives. As
expected, brown funds often specialize in stocks with opposite attributes.

In Panel B of Table 2, we replace idiosyncratic volatility with total return volatility
14The economic magnitude is computed as −0.209×1.350/1.198 = −23.6%, where −0.209 is the regression

coefficient of IVOL in Model 1, 1.350 is the standard deviation of IVOL (Table 1 Panel A), and 1.198 is the
sample mean of Green IO (Table 1 Panel A).
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and our findings remain intact.15 For instance, a one-standard-deviation increase in total
return volatility (RETVOL) is associated with 26.1% lower green fund ownership and 6.7%
lower brown fund ownership in Models 1 and 4, respectively (scaled by the sample mean of
the corresponding fund ownership). In addition, the positive ESG-ownership gap relation
attenuates when total return volatility increases (Model 8).

Overall, our findings support the model prediction that imprecise signals lower investor
demand for risky assets, especially in their preferred investment universe. Therefore, mutual
fund investment is less affected by ESG considerations when volatility is high. In the presence
of unprecedented growth in sustainable investing, our findings highlight the interplay between
ESG preferences and information acquisition in shaping the investment practices of active
fund management.

4.2 Portfolio dispersion and tracking error

While the previous analysis focuses on mutual fund ownership in individual stocks, we move
on to analyzing overall portfolio choices. As shown in Equations (8), (10), and (11), in
the presence of heterogeneous ESG preferences across funds, active funds acquire more firm-
specific information when the firm’s ESG profile departs from green neutrality. This intuition
leads to a testable hypothesis: the portfolio dispersion and tracking error increase when funds
hold assets with more extreme ESG attributes, as implied by Proposition 4.16

To test this hypothesis, we estimate the following monthly Fama and MacBeth (1973)
regression:

DISPj,t = α + β1ESGDevj,t−1 + cMj,t−1 + εj,t, (24)

where DISPj,t refers to four measures, HHIBMKj,t , TEBMKj,t, HHIMKTj,t , and
TEMKTj,t. HHIBMKj,t characterizes the portfolio dispersion of fund j in month t, indicat-
ing the deviation of the fund’s investment strategy from its benchmark portfolio. TEBMKj,t

is the tracking error, reflecting the deviation of fund returns from its benchmark portfolio
returns. HHIMKTj,t and TEMKTj,t are similar measures that use the market portfolio as

15While the idiosyncratic volatility is more aligned with the model setup formulated in Equation (1), we
nevertheless consider total volatility in the empirical analyses as a robustness check.

16Table 1 Panel B confirms the presence of market-wide heterogeneity in ESG preferences across funds,
which is necessary for the model prediction.
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a benchmark.17 To measure the fund-level departure from green neutrality, ESGDevj,t−1, we
take the absolute value of the fund ESG rating. Vector M stacks all other fund-level control
variables: the Fund Return, Fund Flow, Log(Fund TNA), Expense Ratio, Fund Turnover,
Log(Fund Age), and Flow Volatility. We expect to see a positive value of β1, as the model
predicts. Online Appendix Table B.1 provides a detailed definition for each variable. We
also report Newey and West (1987) adjusted t-statistics.

We tabulate the results in Table 3. Consistent with the model prediction, the departure
from green neutrality is positively associated with portfolio dispersion and tracking error.
In particular, a one-standard-deviation increase in Fund ESGDev is associated with 37.4%
higher portfolio dispersion in Model 1 and 14.0% higher tracking error in Model 2 based
on fund-specific benchmarks (scaled by the sample mean of the corresponding dispersion
measures).18 Our findings remain intact when benchmarking against the market portfolio.
Specifically, a one-standard-deviation increase in Fund ESGDev is associated with 44.5%
higher portfolio dispersion in Model 3 and 14.9% higher tracking error in Model 4 (scaled
by the sample mean of the corresponding dispersion measures).

Overall, our findings support the model prediction that when mutual funds invest in
stocks with more extreme ESG profiles (greater departure from green neutrality), they are
more likely to adopt distinct trading strategies and deviate from a passive benchmark, pos-
sibly due to their enhanced information acquisition activities.

5 Asset pricing implications

Having shown that ESG considerations affect mutual fund stock holdings, portfolio and
return dispersions through their information acquisition decisions, we now investigate how
sustainable investing affects stock returns and price informativeness in the cross-section.

17Note that Proposition 4 formulates the portfolio dispersion and tracking error using the market portfolio
as a benchmark. In the empirical analyses, we also employ a fund-specific benchmark from its prospectus to
better capture the active deviations in mutual fund investment.

18The impact of portfolio dispersion is computed as 0.167 × 0.139/0.062 = 37.4%, where 0.167 is the
regression coefficient of Fund ESGDev in Model 1, 0.139 is the standard deviation of Fund ESGDev (Table
1 Panel B), and 0.062 is the sample mean of HHIBMK (Table 1 Panel B).
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5.1 Cross-sectional return predictability

As shown in Proposition 6, the model predicts that the expected return (i) diminishes with
the stock ESG rating and mutual funds’ ESG preferences and (ii) increases with the posterior
variance (inversely related to the signal precision). In addition, green funds acquire more
information about green stocks, and brown funds acquire more information about brown
stocks, as formulated in Equation (10). On the one hand, high green fund ownership implies
more information acquisition and lower variance for green stocks, leading to lower expected
returns for green stocks and amplifying the negative ESG-return relation. On the other hand,
high brown fund ownership also indicates more information acquisition and lower variance
for brown stocks, leading to lower expected returns for brown stocks and weakening the
negative ESG-return relation. Taken together, we expect the negative ESG-return relation
to be more pronounced among green stocks with high green fund ownership and brown stocks
with low brown fund ownership, i.e., when information acquisition and the corresponding
posterior variance, the ESG preference, and the ESG rating affect asset prices in the same
direction.

The analysis proceeds as follows. At the end of month t, stocks are first sorted into quin-
tiles according to their green fund ownership (Green IO). Within each green fund ownership
group, stocks are further sorted into quintiles according to their ESG ratings to generate 25
(5×5) portfolios. The low- (high)-ESG-rating and green-fund-ownership portfolios comprise
the bottom (top) quintile of stocks based on the ESG rating and green fund ownership,
respectively. For each of the 25 portfolios, we compute the value-weighted return in month
t+1 and rebalance the portfolios at the end of month t+1. Within each quintile of port-
folios sorted by green fund ownership, we also implement a zero-cost trading strategy by
taking long positions in the top quintile of stocks (highest ESG rating) and selling short
stocks in the bottom quintile (lowest ESG rating). The payoff of the long-short investment
strategy is computed as the high (top quintile) minus low (bottom quintile) portfolio return
(“HML-R”), indicating the return predictability of ESG ratings after controlling for informa-
tion acquisition. We then report the time-series averages of the monthly returns for each
of the 25 portfolios and the long-short strategy. Similarly, within each quintile of portfolios
sorted by stock ESG ratings, we implement an investment strategy of going long (short)
the high- (low)-green-fund-ownership stocks (“HML-G”). Finally, we consider a univariate
portfolio sort based on ESG ratings (green fund ownership) and report similar statistics in
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the column (row) titled “All”.
In addition to the raw portfolio returns, we report the risk-adjusted returns from (i) the

CAPM, i.e., only adjusting for the market factor (MKT, defined as the excess return on the
value-weighted CRSP market index over the one-month Treasury bill rate); (ii) the Fama-
French six-factor model (FF6), consisting of the market factor (MKT), the size factor (SMB,
defined as small minus big firm return premium), the book-to-market factor (HML, defined as
the high book-to-market minus the low book-to-market return premium), the profitability
factor (RMW, defined as the robust minus weak return premium), the investment factor
(CMA, defined as the conservative minus aggressive return premium), and the momentum
factor (MOM) (Fama and French, 2018);19 and the characteristic-adjusted returns from (iii)
the Daniel et al. (1997) model (DGTW), that is, the stock returns are adjusted by the style
average, where stock styles are created by triple-sorting stocks into 125 (5×5×5) size, book-
to-market, and momentum portfolios. The standard errors in all estimations are corrected
for autocorrelation using the Newey and West (1987) method.

One caveat is that while equilibrium asset pricing predicts a negative relation between
the ESG rating and expected return due to the nonpecuniary benefits of holding green stocks,
we only observe ex post realized returns. Furthermore, Pástor et al. (2022) document that
U.S. green stocks outperformed brown stocks during the last decade, due to an unexpected
shift in investors’ tastes for green holdings. To ensure that the wedge between expected and
realized returns does not distort our findings, we divide the full sample into two subperiods,
January 2001–October 2012 and November 2012–December 2019.20 We expect the results to
be stronger in the first subperiod, which provides a cleaner setting to analyze the equilibrium
asset pricing implications.

Table 4 reports the results of raw return and CAPM-adjusted return, with Panel A1 for
the January 2001–October 2012 subperiod and Panel A2 for the November 2012–December
2019 subperiod. In the interest of brevity, we tabulate the results of FF6-adjusted return
and DGTW-adjusted return in Online Appendix Table B.2 and only discuss the main find-
ings in this subsection. Several findings are worth noting. First, the negative ESG-return

19We thank Kenneth French for making the common factor returns available via his website:
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

20We split the sample in October 2012 because MSCI’s coverage increased dramatically in October 2012,
when it began covering small U.S. stocks (Pástor et al., 2022). The ESG ratings reported in October 2012
are used to assess fund performance in November 2012 (the beginning of the second subperiod).
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relation only holds among stocks with high green fund ownership during the first subpe-
riod (Panel A1). Specifically, brown stocks (i.e., stocks in the bottom ESG rating quintile)
outperform green stocks (i.e., stocks in the top ESG rating quintile) by 0.624% per month
in raw return and 0.578% (0.560%, 0.511%) per month in CAPM-adjusted (FF6-adjusted,
DGTW-adjusted) return. In contrast, the long-short portfolio (“HML-R”) returns as well
as the associated risk-adjusted and characteristic-adjusted returns are insignificant for the
remaining firms.

Second, the negative ESG-return relation is concentrated in stocks with high green fund
ownership because green stocks underperform more in the presence of information acquisi-
tion. The high-ESG, high-Green-IO stocks generate a significant CAPM alpha of −0.280%

per month, while high-ESG stocks in other Green-IO quintiles deliver higher payoff. This
confirms the model prediction that information acquisition makes investment less risky (i.e.,
with a lower posterior variance), lowering the expected returns.

Third, moving to the more recent subperiod, green stocks outperform brown stocks in
CAPM alpha, and the outperformance is also stronger among stocks with high green fund
ownership (Panel A2). While our model does not capture the unexpected shift in investors’
ESG preferences during this period, green stocks heavily invested in by green funds could
be most exposed to this shift in preferences, therefore experiencing more price appreciation
and higher realized returns. Indeed, high-ESG, high-Green-IO stocks yield a significantly
positive CAPM alpha of 0.300% per month during the second subperiod.

In Panels B1 and B2 of Table 4, we report similar statistics by replacing green fund
ownership with brown fund ownership (Brown IO). As expected, we find a significantly
negative ESG-return relation among stocks with low brown fund ownership during the first
subperiod (Panel B1). For instance, the long-short portfolio (“HML-R”) generates a monthly
return of −0.551% and CAPM-adjusted (FF6-adjusted, DGTW-adjusted) return of −0.569%

(−0.555%, −0.515%). Furthermore, the negative return predictability of ESG ratings can
be attributed to the outperformance of brown stocks. The low-ESG, low-Brown-IO stocks
generate a significant CAPM alpha of 0.423% per month, while low-ESG stocks in other
Brown-IO quintiles deliver a lower payoff. Importantly, the long-short portfolio (“HML-R”)
does not generate a significant payoff for most remaining firms.

Finally, as shown in Panel B2, brown stocks underperform during the more recent sub-
period, especially for those heavily invested by brown funds. For instance, low-ESG, high-
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Brown-IO stocks deliver a significant CAPM alpha of −0.523% per month, while low-ESG,
low-Brown-IO stocks generate an insignificant CAPM alpha. One possibility is that because
brown stocks underperform green stocks during this subperiod, brown funds devote less ef-
fort to acquiring information about brown stocks and may face divestment pressure, which
further drives down the return (rather than offsetting the high return in the original model
setup).

In addition to the subperiod analysis, we consider the implied cost of capital (ICC) as an
alternative proxy for the expected return. We follow Hou et al. (2012) and the adjustment
by Pástor et al. (2022) to compute the ICC for each stock-month, and ICC is the discount
rate that equates the stock’s market value to the present value of its expected future cash
flows.21

We repeat the analyses in Table 4 while replacing realized return with ICC during the
holding period. Table 5 has a layout similar to Table 4, with Panels A1 and A2 for portfolios
sorted by green fund ownership (Green IO) and stock ESG ratings and Panels B1 and B2
for portfolios sorted by brown fund ownership (Brown IO) and stock ESG ratings. Panels
A1 and B1 focus on the January 2001–October 2012 subperiod, and Panels A2 and B2 focus
on the November 2012–December 2019 subperiod. As a robustness check, we tabulate the
results of FF6-adjusted ICC and DGTW-adjusted ICC in Online Appendix Table B.3.22

First, green stocks exhibit lower ICC (DGTW-adjusted ICC) than brown stocks in both
subperiods, and the monthly difference in a univariate sort is 0.103% (0.074%) in the first
subperiod and 0.052% (0.023%) in the second subperiod. The negative ESG-ICC relation
is in line with the nonpecuniary benefits of ESG investing and supports our model setup.
Consistent with Pástor et al. (2022), our findings suggest that, compared with the realized
return, ICC is a better proxy for the expected return.

Second, as shown in Panels A1 and A2, the negative ESG-ICC relation is more pro-
21To obtain the future cash flows, we forecast earnings from the cross-sectional regressions for the first three

years ahead. In addition, we assume that the expected return on equity (ROE) mean-reverts to the industry
median ROE by the end of year 12 and forecast ROE from year 4 to year 12 using a linear interpolation.
The residual income from year 12 onward is regarded as a perpetuity. Details on the ICC estimation can be
found in Hou et al. (2012) and the Internet Appendix in Pástor et al. (2022). While the ICC estimated from
this approach measures the annualized expected return, we divide it by 12 to obtain monthly ICC. Later,
we construct monthly rebalanced portfolios with a one-month holding period.

22Note that the results using CAPM- and FF6-adjusted ICCs are qualitatively and quantitatively similar
to ICC; therefore, we focus on ICC and DGTW-adjusted ICC when discussing the findings.
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nounced among stocks with high green fund ownership. When green fund ownership is
low, green stocks display 0.028% (0.036%) and an insignificant 0.019% (0.006%) lower ICC
(DGTW-adjusted ICC) per month than brown stocks in the first and second subperiod,
respectively. When green fund ownership is high, green stocks display 0.149% (0.105%) and
0.108% (0.055%) lower ICC (DGTW-adjusted ICC) per month than brown stocks in the
first and second subperiod, respectively. The monthly difference in ICC (DGTW-adjusted
ICC) spread between high- and low-green-fund-ownership portfolios is significant at −0.122%

(−0.069%) in the first subperiod and −0.089% (−0.049%) in the second subperiod.
Third, the negative ESG-ICC relation is also stronger among stocks with low brown fund

ownership (Panels B1 and B2). When brown fund ownership is low, green stocks display
0.061% (0.066%) and 0.078% (0.043%) lower ICC (DGTW-adjusted ICC) per month than
brown stocks in the first and second subperiod, respectively. When brown fund ownership is
high, the ICCs for green stocks and brown stocks are no longer significantly different in most
cases. The monthly difference in ICC (DGTW-adjusted ICC) spread between high- and
low-brown-fund-ownership portfolios is significant at 0.051% (0.042%) in the first subperiod
and 0.066% (0.045%) in the second subperiod.

Collectively, consistent with the model prediction, we show that active investors’ ESG
preferences play a vital role in the cross-section of stock prices beyond the ESG profile of
the firm, through their information acquisition decisions. The negative ESG-return relation
is mainly confined to stocks with high green fund ownership and low brown fund ownership
because information acquisition lowers the perceived riskiness of the stock, which enhances
the low expected return for green stocks but offsets the high expected return for brown
stocks. Therefore, our findings document a novel beneficial effect of sustainable investing:
green firms can enjoy a lower cost of capital due to (i) the nonpecuniary benefits of holding
green stocks as proposed in prior literature and (ii) lower risk due to enhanced information
acquisition. This allows them to make more socially responsible investments and generate
higher social impact.

5.2 Price informativeness

Our model also predicts that price informativeness increases with signal precision (Proposi-
tion 7). In addition, signal precision improves when a firm’s ESG profile departs from green

32



neutrality and its investors display dispersed ESG preferences, as shown in Equations (8),
(10), and (11). Therefore, the model implies higher price informativeness in the presence of
(i) a departure from green neutrality and (ii) heterogeneous ESG preferences.

To test the model predictions, we estimate the following annual Fama and MacBeth
(1973) regression:

Ei,y+h

Ai,y

= α + β1Log

(
Mi,y

Ai,y

)
+ β2Log

(
Mi,y

Ai,y

)
× ESGDevi,y + β3Log

(
Mi,y

Ai,y

)
× ESGDispi,y

+ β4ESGDevi,y + β5ESGDispi,y + β6Log

(
Ei,y

Ai,y

)
+ cNi,y + εi,y+h, (25)

where Ei,y+h is the earnings before interest and taxes of stock i in year y+h, Ai,y is the total
assets, Mi,y is the market capitalization, ESGDevi,y is the departure from green neutrality,
and ESGDispi,y is the stock-level heterogeneity in fund ESG preferences. Vector N stacks
all other stock-level control variables: the IO, Log(Asset), Leverage, Tangibility, Log(Sales),
Cash, Log(Analyst Coverage), and Analyst Dispersion. The β1 coefficient measures the extent
to which the current stock market valuation predicts future earnings and proxies for the price
informativeness at the market level (Bai et al., 2016). The β2 and β3 coefficients capture the
incremental effect of departure from green neutrality and heterogeneous ESG preferences,
respectively, allowing us to test the model prediction in the cross-section. This empirical
specification and the choice of control variables closely follow Kacperczyk et al. (2021).
Online Appendix Table B.1 provides a detailed definition for each variable. We also report
Newey and West (1987) adjusted t-statistics.

We tabulate the results in Table 6. We focus on the one-year (h = 1, Models 1–4),
three-year (h = 3, Models 5–8), and five-year (h = 5, Models 9–12) forecasting horizons.
Consistent with the model prediction, the β2 and β3 coefficients are positive and statistically
significant in all specifications, suggesting that stocks with extreme ESG profiles and those
held by investors with heterogeneous ESG preferences display high price informativeness.
As shown in Model 2 (Model 3), a one-standard-deviation increase in Stock ESGDev (Stock
ESGDisp) is associated with 26.3% (41.4%) higher price informativeness in the next year.23

The results are similar for the joint specification (Model 4) and robust for longer horizons
23The increase in price informativeness is computed as (0.027× 0.134) / (0.008 + 0.027× 0.214) = 26.3%,

where 0.008 and 0.027 are the regression coefficients of Log(M/A) and Log(M/A)×Stock ESGDev in Model
2, and 0.214 and 0.134 are the sample mean and standard deviation of Stock ESGDev (Table 1 Panel A).
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(Models 5–12).
The evidence on stock-level price informativeness is in line with our fund-level analy-

ses (Table 3), i.e., in the presence of departure from green neutrality and heterogeneous
ESG preferences in aggregate, active mutual funds deviate more from a passive benchmark,
possibly due to their enhanced information acquisition activities. In addition, our find-
ings suggest that sustainable investing not only provides capital to green firms so they can
generate greater social impact but also has broader implications for the financial market.
To optimize the asset allocation with ESG considerations, active funds make information
acquisition decisions according to their ESG preferences, firms’ ESG profiles, and the het-
erogeneity in ESG preferences across all market participants. The informed trading from
active funds further improves the price efficiency of the stocks in their desired investment
universe.

Overall, our empirical results build a compelling case suggesting that sustainable investing
plays a prominent role in determining the information acquisition decisions and investment
strategies of active mutual funds, the cross-section of asset prices, and the price informative-
ness of the underlying assets. As more institutions seek sustainable investing, we will likely
observe an even more substantial impact in the future.

6 Calibration

We calibrate the model to provide further quantitative perspectives regarding the model
implications. The calibration considers an economy consisting of two types of active funds:
ESG indifferent (δI = 0) and ESG perceptive (δP > 0). The latter funds attribute value
to holding green assets and they represent a fraction φ of the total mass of agents. Each
individual fund is assumed to be atomistic, having no independent impact on equilibrium.
There are three types of investable assets, namely, a green asset, a brown asset, and the
ESG-neutral composite asset.

The expected monetary payoff of all tradable assets is assumed, without loss of generality,
to be equal to one dollar (µgr = µbr = µagg = 1). The prior variance of the aggregate asset
payoff is set to be σagg = 0.152. Hence, the volatility of the composite asset is 15% of
the expected payoff, approximately matching the annualized historical volatility of the U.S.
equity market (15.19% during the extended sample period from July 1963 through December
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2019). The observed annual equity premium during that period is 6.50%. Based on Equation
(20), if the posterior variance σ̄agg were equal to the prior variance σagg , the expected net
payoff ρσ̄agg would be equal to 6.75% for ρ = 3. We retain the value of three for the
risk aversion parameter, which translates to a market premium slightly below 6.75%, as
information acquisition leads to higher posterior precision.

The green and brown assets are assumed to have a unit loading on the aggregate risk
factor (bgr = bbr = 1). The asset-specific shocks are assumed to have variance given by
σgr = σbr = 0.152. Hence, the total variance of the individual asset payoff is approximately
equal to 0.212. Regarding the risk factors, we assume that the mean supply of all the risk
factors is one unit, while the standard deviation of the supply is 10% of the mean. Hence,
σX = 0.12.

We next set the ESG preference parameter, δP , as well as the individual asset ESG scores,
ggr and gbr . The expression δPggr (δPgbr) represents the nonpecuniary effects from holding
the green (brown) asset. We choose δP = 1 as the benchmark value for ESG preferences and
consider ggr = 0.05 and gbr = −0.05. With these parameter specifications, sustainable funds
perceive 5% of the expected financial payoff as nonpecuniary benefit (loss) due to holding
one unit of the green (brown) asset. Thus, the green and brown assets considered here can
be perceived as members in the cross-section of individual stocks that considerably depart
from green neutrality.

The cost function is given by cij = κS2
ij. As the fund-level cost of information acquisition

is the sum of cij across stock holdings, the value κ determines the information cost and,
hence, the amount of information purchased in equilibrium. In our sample, active and index
funds display an average expense ratio of 1.18% and 0.56%, respectively. The difference in
fees, i.e., 0.62%, could establish a plausible proxy for the information acquisition cost. Thus,
we choose κ = 0.01, which, as we show later, implies that informed funds optimally spend
between 50 and 60 basis points to purchase information.

Equilibrium information decisions are determined as the solution to a fixed-point problem.
That is, the signal precision in Equation (7) depends on the marginal benefit of information
acquisition in Equation (8), which, in turn, depends on the aggregate signal precision through
S̄i, σ̄i, and δ̄i. In the calibration, the equilibrium is determined by numerically solving
Equation (7) jointly for the ESG-perceptive and ESG-indifferent funds.
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6.1 Understanding the individual fund

In this subsection, we study the optimal information acquisition policy and the portfolio
characteristics for the marginal, individual, fund when φ = 0.5 and the ESG preference
parameter ranges between 0 and 1. Figure 1 describes the calibration results. There are
altogether nine graphs. Graph (a) shows the fund’s optimal signal precision. Based on
Equations (7) and (8), the signal precision increases (decreases) in δj for the green (brown)
risk factors. When ESG preferences are near 0.5, the average value in the economy, the risk
factors have identical signal precision. Then, the total cost of information acquisition, shown
in Graph (b), is convex in ESG preferences, growing for values of δj that depart from 0.5. The
calibration result indicates that the optimal cost of information acquisition is approximately
55 basis points, compatible with the observed gap between active and passive mutual fund
expense ratios, as noted earlier. Graph (c) shows the expected portfolio positions relative
to the average position across agents. When ESG preferences are near 0.5, the expected
portfolio positions are equal to the market portfolio. When δj = 1, the expected position is
approximately 0.4 units higher for the green asset and 0.4 units lower for the brown asset.
Conversely, the brown asset dominates stock holdings when δj = 0.

Graph (d) shows the expected nonpecuniary payoff from ESG investing, i.e., E [δjGj].
As indicated by Equation (14), the expected portfolio ESG profile, E [Gj], increases with δj.
The expected nonpecuniary benefits are then zero when the fund is ESG indifferent (δj = 0).
The nonpecuniary benefits are slightly negative when δj is below the average value in the
economy, as the fund benefits from a more favorable financial profile of the assets it holds.
The nonpecuniary benefits become positive when δj is greater than 0.5, reaching a maximum
perceived value of 4% for δj = 1.24

Next, Graph (e) displays the portfolio dispersion. The measure increases significantly
when the fund ESG preference δj departs from the aggregate ESG preference, as described
in Proposition 4. The portfolio dispersion is 0.095 for δj = 0.5 and increases to 0.406 for
δj that is equal to 0 or 1. Likewise, the tracking error, shown in Graph (f), substantially
increases with the departure of the ESG preference from the average, ranging between 0.033
and 0.093.

24The nonpecuniary benefits are given by the ESG preference parameter, δj = 1, times the product of the
expected excess position in the green asset and its ESG score, 0.4 × 0.05, plus the product of the expected
excess position in the brown asset and its ESG score, (−0.4)× (−0.05).
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Proposition 5 implies that the expected net payoff diminishes with the fund’s ESG pref-
erences. Per the calibration results, the portfolio expected net payoff, reported in Graph (g),
is approximately 0.2, decreasing by approximately 0.04 for a unit increase in δj. In Online
Appendix A.6, we also derive the CAPM alpha of the portfolio, displayed in Graph (h).
Similar to the expected net payoff, the CAPM alpha decreases by approximately 4% when
δj increases from 0 to 1, turning from positive to negative, due to increasingly overweighting
green assets.

Finally, we assess the welfare implications of ESG motives. Following the derivations in
Online Appendix A.7, Graph (i) displays the expected certainty equivalent loss perceived
by a fund with ESG preference δj that is enforced to adopt the information decisions and
portfolio strategy that are optimal for a fund with ESG preference δsub. We experiment with
three values for δsub, namely, zero, 0.5, and 1. The loss is expressed as a percentage of the
optimal expected net payoff. The utility loss can be substantial when the distance between
δj and δsub grows. For instance, an ESG-perceptive fund with δj = 1 that implements the
information acquisition and portfolio policies of a fund with δsub = 0 perceives a certainty
equivalent loss of approximately 21.5% of the expected net payoff.

6.2 Price informativeness and the size of the active fund industry

We next study the general equilibrium implications for the cross-section of price informa-
tiveness and the overall size of the active fund industry. As in our calibration the green and
brown assets have identical characteristics other than the opposite ESG profiles, they should
display symmetric implications for the average signal precision and price informativeness.

Graph (a) shows the average signal precision across funds as a function of δP when
φ = 0.5. The corresponding graph in the bottom row displays the variation in the aggregate
signal precision with the choice of φ when δP = 1. When all funds are ESG indifferent
(δP = 0 or φ = 0), the average signal precision for the green and brown risk factors is 0.4275,
which leads to a posterior variance equal to 0.1462, lower than the prior value (0.152) by
more than 5%.25 The average signal precision for both green and brown assets grows with
the dispersion in ESG preferences, with a higher δP , and with the heterogeneity across agents

25According to Proposition 1, the posterior precision is directly increased by the signal precision, as well as
indirectly through the price signal precision, i.e., σ̄−1

gr = σ−1
gr + S̄gr +

S̄2
gr

ρ2σX
= 1

0.152 +0.4275+ 0.42752

32×0.12 ≈ 1
0.1462 .
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(maximum heterogeneity obtains for φ = 0.5). Notably, the signal precision grows by 8.7%
(from 0.4275 to 0.4649) when δP increases from 0 to 2. Furthermore, when δP = 1, the signal
precision grows by 2.2% (from 0.4275 to 0.4368) for φ = 0.5 relative to the case where there
is no heterogeneity in ESG preferences (φ = 0 or 1).

Graph (b) in Figure 2 shows the variation of the price informativeness measure, intro-
duced in Subsection 2.5, with δP . The price informativeness grows with δP for both the
green and brown assets, increasing from 4.43 for δP = 0, to 4.48 for δP = 1, and to 4.62 for
δP = 2. The increase reflects the higher average signal precision shown in Graph (a). As
the bottom graph shows, the presence of ESG-perceptive funds implies an increase in price
informativeness only when there is heterogeneity in ESG preferences. Price informativeness
records the minimum value (4.43) when ESG motives are absent or homogeneous.

The sensitivity of information decisions to dispersions in cross-stock ESG attributes and
cross-fund ESG preferences points to the potential meaningful implications of ESG motives
for the size of the active asset management industry. The scope of the active industry has
been explored in earlier work, including Pástor and Stambaugh (2012) and Pástor et al.
(2015). We show that sustainable investing has a positive effect on the overall scope of the
active asset management industry, leading to a greater amount of information purchased in
equilibrium. To quantify this effect, we use the aggregate cost of information acquisition as
a proxy for the size of the active fund industry. The overall cost is given by φ ·

∑N
i=1 κS

2
iP +

(1− φ) ·
∑N

i=1 κS
2
iI , where SiP and SiI are the optimal signal precisions acquired by ESG-

perceptive and ESG-indifferent agents for asset i, respectively. As shown in Graph (c) at
the top, the total information cost grows with δP , from a minimum of 54.8 basis points for
the case where all agents are ESG indifferent (δP = 0), to 57.0 basis points for δP = 1 (a 4%
increase) and to 63.7 basis points for δP = 2 (a 16% increase). The bottom graph confirms
that the increase in information costs applies only when ESG preferences are dispersed, while
the maximum dispersion reflects the φ = 0.5 case.

7 Conclusion

We comprehensively analyze the equilibrium implications of fund managers making infor-
mation acquisition decisions based on financial and social objectives. The model produces
a number of predictions regarding fund managers’ portfolio choices, the scope of the active
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mutual fund industry, as well as the cross-section of asset prices.
In equilibrium, when active funds exhibit heterogeneous preferences for sustainable invest-

ing and when assets display heterogeneous ESG attributes, ESG-perceptive (ESG-indifferent)
funds acquire more information about green (brown) assets and less information about brown
(green) assets. Still, incremental information is purchased in equilibrium due to ESG motives,
amplifying the size of the active fund industry. The incremental information characterizes
any asset that departs from green neutrality. ESG-perceptive (ESG-indifferent) funds also
overweight green (brown) assets, with the portfolio tilts more pronounced for low-volatility
stocks. The optimal policies of ESG-perceptive and ESG-indifferent funds differ significantly
due to nonpecuniary motives. In particular, enforcing ESG-perceptive funds to follow the
optimal information and portfolio policies of ESG-indifferent funds triggers significant ex-
pected utility costs due to the loss of nonpecuniary benefits. Furthermore, the portfolio
dispersion and tracking error increase when the assets held by the funds depart from green
neutrality, when the fund preference for holding green stocks departs from the aggregate
ESG preference, and when the market-wide heterogeneity in ESG preferences widens.

Regarding asset pricing implications, information acquisition deepens (weakens) the neg-
ative ESG-return relation for green (brown) assets. Specifically, the expected return for
green assets is lower due to (i) the nonpecuniary benefits from holding green investments
and (ii) the lower posterior variance of the green asset payoff due to higher signal precision.
In contrast, the two forces act in opposite directions for brown assets. Finally, information
acquisition improves the price informativeness of the underlying assets, when such assets de-
part from green neutrality and are held by active funds with heterogeneous ESG preferences.

Empirical tests provide supporting evidence. First, while green (brown) funds invest
more in green (brown) stocks, both types of funds invest less in their preferred investment
universe as the volatility of the investable assets rises. Second, mutual funds that invest in
stocks with greater departure from green neutrality are more likely to adopt distinct trading
strategies and deviate from a passive benchmark. Third, the negative ESG-return relation
only holds among stocks with high green fund ownership (low brown fund ownership), as
information acquisition implies even lower expected returns for green stocks, while offsets the
high expected returns for brown stocks. Finally, stocks with greater departure from green
neutrality and held by funds with more heterogeneous ESG preferences display higher price
informativeness. The model predictions are further quantified in the calibration exercise.
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Our findings highlight that ESG considerations play an essential role in shaping mutual
funds’ information acquisition decisions, their portfolio choices, and the size of the active
fund industry. As a result, sustainable investing not only provides capital to green firms, but
also improves the overall efficiency of the financial market due to ESG-induced information
acquisition. Information acquisition also reduces the risk of sustainable investing and tilts
the negative ESG-return relationship, indicating a potential channel to explain the mixed
empirical evidence documented in prior studies.

The paper suggests avenues for future research. First, due to the lack of consistency
in the ESG ratings provided by different rating agencies, it could be helpful to account for
the rating uncertainty and the additional information acquired about assets’ ESG profiles.
Second, it could be useful to explicitly account for delegation, i.e., (uninformed) households
delegate their investments to the (informed) intermediary sector. Then, testable equilibrium
restrictions on fund flows and ESG motives can be derived.26 Finally, while the ESG profile
of an asset is exogenous in our setting, activist shareholders can engage in corporate ESG
activities and improve the sustainability performance of targeted firms. We leave these and
other extensions for future work.

26See, e.g., Dou et al. (2022) for the equilibrium asset pricing implications of fund flows.
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Table 1: Summary Statistics

This table presents the summary statistics for the data used in the paper during the period from 2001 to 2019. Panels A and
B report the means, standard deviations, medians, and quantile distributions of stock and fund characteristics, respectively.
Online Appendix Table B.1 provides a detailed definition for each variable.

Mean Std.Dev. Quantile Distribution

10% 25% Median 75% 90%

Panel A: Stock Characteristics

Stock ESG -0.006 0.253 -0.352 -0.221 -0.028 0.168 0.337
Stock ESGDev 0.214 0.134 0.051 0.093 0.195 0.316 0.415
Stock ESGDisp 0.151 0.068 0.067 0.107 0.150 0.197 0.240
Green IO 1.198 2.359 0.000 0.001 0.099 1.266 4.104
Brown IO 4.966 5.237 0.062 0.786 3.269 7.581 12.408
IVOL 1.774 1.350 0.678 0.945 1.410 2.148 3.221
RETVOL 2.479 1.726 1.038 1.409 2.017 2.981 4.376
Log(Size) 7.284 1.600 5.368 6.107 7.143 8.297 9.529
Log(BM) -0.735 0.791 -1.759 -1.180 -0.648 -0.208 0.158
ROE 0.012 0.159 -0.064 0.002 0.025 0.046 0.079
I/A 0.141 0.382 -0.098 -0.011 0.061 0.171 0.400
1M Return 0.924 12.447 -12.500 -5.222 0.811 6.722 13.919
12M Return 0.118 0.478 -0.375 -0.139 0.077 0.299 0.592
IO 0.715 0.242 0.348 0.581 0.775 0.904 0.990
Log(Illiquidity) -6.369 2.202 -9.228 -7.949 -6.445 -4.878 -3.437
Log(Analyst Coverage) 1.987 0.844 0.693 1.386 2.079 2.639 3.045
Analyst Dispersion 0.134 0.399 0.008 0.015 0.033 0.089 0.250
Log(M/A) -0.108 1.076 -1.675 -0.731 -0.012 0.624 1.197
E/A 0.040 0.174 -0.085 0.019 0.063 0.114 0.175
Log(Asset) 7.330 1.917 4.904 5.943 7.257 8.569 9.904
Leverage 0.553 0.264 0.200 0.355 0.548 0.737 0.898
Tangibility 0.232 0.246 0.012 0.040 0.134 0.352 0.655
Log(Sales) 6.637 2.115 4.177 5.347 6.669 8.009 9.290
Cash 0.131 0.157 0.009 0.023 0.073 0.178 0.331

Panel B: Fund Characteristics

Fund ESG -0.020 0.271 -0.380 -0.250 -0.031 0.202 0.362
Fund ESGDev 0.233 0.139 0.045 0.113 0.227 0.347 0.433
HHIBMK 0.062 0.167 0.003 0.011 0.019 0.036 0.093
TEBMK 0.132 0.333 0.010 0.026 0.055 0.120 0.271
HHIMKT 0.064 0.162 0.008 0.013 0.021 0.038 0.095
TEMKT 0.230 0.545 0.033 0.059 0.118 0.233 0.448
Fund Return 0.588 4.628 -5.151 -1.593 0.925 3.228 5.711
Fund Flow -0.001 4.731 -3.120 -1.508 -0.463 0.784 3.374
Log(Fund TNA) 5.840 1.696 3.608 4.514 5.765 7.036 8.132
Expense Ratio 1.182 0.395 0.737 0.933 1.147 1.403 1.690
Fund Turnover 0.781 0.767 0.170 0.310 0.570 0.980 1.580
Log(Fund Age) 4.793 0.849 3.664 4.317 4.905 5.347 5.727
Flow Volatility 4.424 10.408 0.506 0.910 1.819 3.889 8.417
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Table 2: Stock ESG Rating, Return Volatility, and Mutual Fund Ownership

Panel A presents the results of the following monthly Fama-MacBeth regression and their corresponding Newey-West adjusted
t-statistics:

IOi,t = α+ β1ESGi,t−1 + β2IV OLi,t−1 + β3ESGi,t−1 × IV OLi,t−1 + cNi,t−1 + εi,t,

where IOi,t is the mutual fund ownership of stock i in month t , ESGi,t−1 is the ESG rating, and IV OLi,t−1 is the idiosyncratic
volatility. IOi,t is measured by green fund ownership (Models 1-3), brown fund ownership (Models 4-6), and the difference in
ownership between green and brown funds (Models 7-9). We identify the green (brown) funds as those with a fund-level ESG
rating in the top (bottom) quintile across all funds at the end of each month. Vector N stacks all other stock-level control
variables, namely, the Log(Size), Log(BM), ROE, I/A, 1M Return, 12M Return, IO, Log(Illiquidity), Log(Analyst Coverage),
and Analyst Dispersion. Panel B reports similar statistics when we replace IV OLi,t−1 with RETV OLi,t−1, defined as the total
return volatility of stock i in month t-1. Online Appendix Table B.1 provides a detailed definition for each variable. Numbers
with *, **, and *** are significant at the 10%, 5%, and 1% levels, respectively.

Panel A: Mutual Fund Ownership Regressed on Lagged Stock ESG Rating and Idiosyncratic Volatility

Dep. Var. = Green IO Brown IO Green − Brown IO

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Stock ESG 1.873*** 3.004*** 2.047*** -3.558*** -5.671*** -2.513*** 5.430*** 8.675*** 4.560***
(11.69) (10.84) (13.86) (-21.22) (-15.50) (-22.50) (18.43) (13.80) (20.78)

IVOL -0.209*** -0.241*** 0.074*** -0.290*** -0.220*** -0.447*** 0.081*** -0.021 0.521***
(-8.24) (-8.49) (4.79) (-11.55) (-7.84) (-10.53) (3.59) (-0.63) (14.29)

Stock ESG × IVOL -0.726*** -0.501*** 1.354*** 0.478*** -2.079*** -0.979***
(-8.34) (-7.30) (7.62) (6.62) (-8.14) (-7.53)

Log(Size) 0.773*** -0.912*** 1.685***
(12.24) (-9.72) (11.36)

Log(BM) -0.213*** 0.537*** -0.750***
(-5.32) (13.51) (-13.72)

ROE -0.429*** 1.547*** -1.977***
(-4.56) (7.14) (-8.16)

I/A -0.125** -0.018 -0.106
(-2.17) (-0.24) (-0.96)

1M Return -0.007*** 0.011*** -0.018***
(-10.84) (7.17) (-9.44)

12M Return -0.425*** 0.550*** -0.975***
(-6.92) (4.24) (-5.73)

IO 1.055*** 9.340*** -8.285***
(7.77) (19.38) (-13.76)

Log(Illiquidity) 0.088*** 0.068 0.020
(3.01) (1.17) (0.33)

Log(Analyst Coverage) 0.231*** -0.556*** 0.787***
(7.34) (-6.44) (9.92)

Analyst Dispersion 0.102*** -0.645*** 0.747***
(4.60) (-7.20) (7.16)

Constant 1.600*** 1.624*** -5.356*** 5.246*** 5.188*** 7.722*** -3.646*** -3.564*** -13.078***
(30.65) (31.56) (-22.56) (24.18) (24.60) (8.23) (-17.80) (-18.35) (-12.89)

Obs 509,482 509,482 419,014 509,482 509,482 419,014 509,482 509,482 419,014
R-squared 0.077 0.088 0.327 0.048 0.056 0.347 0.059 0.070 0.365

Panel B: Mutual Fund Ownership Regressed on Lagged Stock ESG Rating and Return Volatility

Dep. Var. = Green IO Brown IO Green − Brown IO

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

Stock ESG 1.865*** 3.324*** 2.317*** -3.515*** -6.104*** -2.670*** 5.380*** 9.427*** 4.987***
(11.74) (10.79) (12.96) (-20.92) (-14.58) (-22.31) (18.50) (13.22) (19.30)

RETVOL -0.181*** -0.211*** 0.055*** -0.193*** -0.129*** -0.350*** 0.012 -0.082** 0.405***
(-6.49) (-6.85) (2.94) (-9.04) (-4.96) (-10.21) (0.40) (-2.03) (14.00)

Stock ESG × RETVOL -0.682*** -0.483*** 1.222*** 0.421*** -1.904*** -0.905***
(-8.25) (-7.19) (7.45) (6.52) (-7.96) (-7.43)

Log(Size) 0.764*** -0.848*** 1.612***
(12.68) (-9.75) (11.62)

Log(BM) -0.210*** 0.549*** -0.759***
(-5.38) (14.29) (-14.73)

ROE -0.410*** 1.560*** -1.970***
(-4.52) (6.81) (-7.50)

I/A -0.119** -0.017 -0.102
(-2.08) (-0.22) (-0.92)

1M Return -0.007*** 0.010*** -0.017***
(-11.06) (6.59) (-8.94)

12M Return -0.424*** 0.554*** -0.978***
(-6.71) (4.23) (-5.62)

IO 1.036*** 9.414*** -8.378***
(7.73) (19.28) (-13.81)

Log(Illiquidity) 0.084*** 0.110* -0.026
(2.87) (1.78) (-0.43)

Log(Analyst Coverage) 0.229*** -0.548*** 0.777***
(7.61) (-6.33) (9.44)

Analyst Dispersion 0.103*** -0.655*** 0.757***
(4.32) (-7.11) (6.93)

Constant 1.672*** 1.708*** -5.297*** 5.200*** 5.119*** 7.512*** -3.528*** -3.411*** -12.808***
(24.32) (24.72) (-23.70) (25.14) (25.70) (8.20) (-19.85) (-20.83) (-13.25)

Obs 509,487 509,487 419,017 509,487 509,487 419,017 509,487 509,487 419,017
R-squared 0.081 0.093 0.329 0.046 0.054 0.346 0.061 0.073 0.364
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Table 3: Mutual Fund Portfolio Dispersion and Tracking Error

Model 1 presents the results of the following monthly Fama-MacBeth regression and their corresponding Newey-West adjusted
t-statistics:

HHIBMKj,t = α+ β1ESGDevj,t−1 + cMj,t−1 + εj,t,

where HHIBMKj,t is the portfolio dispersion of fund j in month t computed with respect to the fund’s benchmark.
ESGDevj,t−1 is the fund-level departure from green neutrality, while vector M stacks all other fund-level control variables,
namely, the Fund Return, Fund Flow, Log(Fund TNA), Expense Ratio, Fund Turnover, Log(Fund Age), and Flow Volatility.
Model 2 reports similar statistics when we replace HHIBMKj,t with TEBMKj,t, defined as the tracking error of fund j in
month t and computed with respect to the fund’s benchmark. Models 3-4 report similar statistics when the dependent variables
are HHIMKTj,t and TEMKTj,t, indicating the portfolio dispersion and tracking error, respectively, computed with respect
to the market portfolio. Online Appendix Table B.1 provides a detailed definition for each variable. Numbers with *, **, and
*** are significant at the 10%, 5%, and 1% levels, respectively.

Portfolio Dispersion and Tracking Error Regressed on Lagged ESG Deviation

Dep. Var. = HHIBMK TEBMK HHIMKT TEMKT

Model 1 Model 2 Model 3 Model 4

Fund ESGDev 0.167*** 0.133*** 0.205*** 0.247***
(13.84) (4.42) (14.78) (5.88)

Fund Return -0.003*** -0.002 -0.003*** -0.004
(-3.01) (-1.06) (-2.99) (-1.11)

Fund Flow 0.000*** 0.001** 0.000** 0.001*
(3.59) (2.36) (2.12) (1.76)

Log(Fund TNA) 0.001** -0.005*** 0.002*** -0.005***
(2.26) (-8.00) (4.33) (-4.56)

Expense Ratio -0.011*** 0.083*** -0.008*** 0.103***
(-5.42) (10.64) (-5.35) (10.41)

Fund Turnover 0.007*** 0.027*** 0.004*** 0.015***
(4.55) (10.18) (4.99) (4.05)

Log(Fund Age) -0.008*** 0.026*** -0.005*** 0.017***
(-6.35) (8.62) (-4.86) (3.98)

Flow Volatility 0.000*** 0.002*** 0.000*** 0.002***
(3.52) (8.30) (6.04) (10.94)

Constant 0.093*** -0.175*** 0.067*** -0.143***
(9.68) (-7.50) (9.04) (-3.61)

Obs 475,228 475,180 475,233 488,966
R-squared 0.062 0.113 0.078 0.156
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Table 4: Performance of Portfolios Sorted by Mutual Fund Ownership and ESG Rating

In Panels A1 and A2, at the end of month t , stocks are first sorted into quintiles according to their green fund ownership.
Within each green fund ownership group, stocks are further sorted into quintiles according to their ESG ratings to generate 25
(5×5) portfolios. The low- (high)-ESG-rating and green-fund-ownership portfolios comprise the bottom (top) quintile of stocks
based on the ESG rating and green fund ownership, respectively. For each of the 25 portfolios, we compute the value-weighted
return in month t+1 and rebalance the portfolios at the end of month t+1. Panel A reports the time-series averages of the
monthly returns for each of the 25 portfolios and for the investment strategy of going long (short) in the high- (low)-ESG-rating
stocks (“HML-R”) and the investment strategy of going long (short) in the high- (low)-green-fund-ownership stocks (“HML-G”).
The column “All” reports similar statistics for the portfolios sorted only by the ESG ratings, and the row “All” reports similar
statistics for the portfolios sorted only by green fund ownership. The portfolio returns are further adjusted by the CAPM. Panels
A1 and A2 report the subperiod results for January 2001–October 2012 and for November 2012–December 2019, respectively.
Panels B1 and B2 report similar statistics when we replace green fund ownership with brown fund ownership. We identify green
(brown) funds as those with a fund-level ESG rating in the top (bottom) quintile across all funds at the end of each month.
The Newey-West adjusted t-statistics are shown in parentheses. Online Appendix Table B.1 provides a detailed definition for
each variable. Numbers with *, **, and *** are significant at the 10%, 5%, and 1% levels, respectively.

Return CAPM-adjusted Return

Ownership Stock ESG Stock ESG

Low 2 3 4 High HML-R All Low 2 3 4 High HML-R All

Panel A1: Portfolios Sorted by Green Fund Ownership and ESG Rating (Jan 2001–Oct 2012)

Low 0.871 0.723 0.468 0.609 0.551 -0.319 0.755 0.464* 0.335 0.122 0.214 0.173 -0.291 0.357
(1.40) (1.26) (0.89) (1.15) (1.07) (-1.02) (1.38) (1.76) (1.26) (0.36) (0.86) (0.62) (-0.97) (1.66)

2 0.816 0.899 0.803 0.533 1.001** 0.184 0.738 0.419* 0.473 0.398 0.171 0.620*** 0.201 0.345*
(1.45) (1.35) (1.17) (1.07) (2.19) (0.55) (1.43) (1.76) (1.40) (0.92) (0.59) (2.64) (0.62) (1.89)

3 0.603 0.342 0.560 0.131 0.533 -0.070 0.482 0.208 -0.063 0.175 -0.262 0.150 -0.059 0.087
(1.09) (0.63) (1.06) (0.24) (1.19) (-0.24) (0.95) (0.95) (-0.35) (0.83) (-1.61) (0.77) (-0.20) (0.65)

4 0.517 0.417 0.496 0.385 0.271 -0.246 0.412 0.148 0.021 0.121 -0.010 -0.143 -0.291 0.028
(1.09) (0.82) (1.04) (0.72) (0.52) (-0.89) (0.92) (0.85) (0.08) (0.76) (-0.04) (-0.79) (-1.05) (0.29)

High 0.706 0.356 0.496 0.216 0.083 -0.624*** 0.236 0.298 -0.012 0.093 -0.168 -0.280** -0.578** -0.152
(1.37) (0.77) (0.95) (0.43) (0.18) (-2.65) (0.50) (1.46) (-0.05) (0.54) (-0.86) (-2.09) (-2.48) (-1.58)

HML-G -0.165 -0.367 0.029 -0.393 -0.469 -0.304 -0.518** -0.166 -0.346 -0.029 -0.381 -0.454 -0.287 -0.508**
(-0.55) (-1.04) (0.07) (-1.23) (-1.46) (-0.94) (-2.10) (-0.55) (-0.98) (-0.07) (-1.16) (-1.38) (-0.87) (-2.01)

All 0.594 0.277 0.377 0.225 0.305 -0.290 0.223* -0.127 0.001 -0.147 -0.069 -0.292
(1.29) (0.57) (0.80) (0.50) (0.71) (-1.51) (1.74) (-0.79) (0.01) (-1.25) (-0.89) (-1.51)

Panel A2: Portfolios Sorted by Green Fund Ownership and ESG Rating (Nov 2012–Dec 2019)

Low 0.736 0.820* 0.869** 0.786* 0.785* 0.049 0.802* -0.771** -0.594** -0.461* -0.580** -0.614** 0.158 -0.592**
(1.57) (1.92) (2.01) (1.91) (1.82) (0.20) (1.96) (-2.37) (-2.22) (-1.74) (-2.17) (-2.21) (0.59) (-2.43)

2 0.786* 0.965*** 1.132** 1.145*** 0.969** 0.183 0.991** -0.764*** -0.413* -0.332 -0.393 -0.561** 0.203 -0.482**
(1.71) (2.74) (2.37) (2.83) (2.23) (0.70) (2.49) (-2.66) (-1.81) (-1.11) (-1.55) (-2.57) (0.72) (-2.49)

3 1.023** 1.477*** 1.098** 0.871** 1.125*** 0.102 1.134*** -0.402 0.129 -0.323 -0.539*** -0.318 0.083 -0.275
(2.17) (3.45) (2.60) (2.34) (2.97) (0.33) (3.02) (-1.35) (0.48) (-1.31) (-2.98) (-1.59) (0.28) (-1.66)

4 1.268*** 1.836*** 1.165*** 0.932*** 1.203*** -0.065 1.247*** -0.075 0.702*** -0.020 -0.299 -0.173 -0.097 -0.023
(3.45) (5.67) (3.14) (2.78) (3.35) (-0.23) (4.00) (-0.28) (3.73) (-0.10) (-1.51) (-0.80) (-0.28) (-0.17)

High 1.006*** 1.079*** 1.161*** 1.229*** 1.362*** 0.357* 1.213*** -0.217 -0.040 -0.087 0.085 0.300*** 0.517** 0.072
(3.27) (3.88) (3.79) (4.62) (4.83) (1.69) (4.56) (-1.56) (-0.30) (-0.84) (0.76) (2.65) (2.41) (1.29)

HML-G 0.270 0.259 0.292 0.444 0.578* 0.308 0.412 0.554 0.553 0.374 0.664** 0.914*** 0.359 0.664**
(0.79) (0.77) (0.96) (1.35) (1.87) (1.07) (1.49) (1.57) (1.65) (1.26) (2.01) (2.81) (1.14) (2.36)

All 1.074*** 1.397*** 1.045*** 1.120*** 1.267*** 0.193 -0.251 0.073 -0.156 -0.105 0.121** 0.372*
(3.11) (4.22) (3.36) (3.92) (4.68) (1.07) (-1.58) (0.41) (-1.65) (-1.41) (1.99) (1.85)

Panel B1: Portfolios Sorted by Brown Fund Ownership and ESG Rating (Jan 2001–Oct 2012)

Low 0.770** 0.373 0.482 0.682 0.219 -0.551* 0.354 0.423** 0.008 0.104 0.308 -0.146 -0.569* -0.010
(2.14) (0.75) (0.94) (1.38) (0.45) (-1.68) (0.83) (2.00) (0.03) (0.32) (1.17) (-0.65) (-1.77) (-0.07)

2 0.565 0.282 0.220 0.241 0.230 -0.335 0.313 0.205 -0.107 -0.174 -0.136 -0.181 -0.386* -0.080
(1.29) (0.57) (0.44) (0.47) (0.47) (-1.38) (0.68) (0.96) (-0.44) (-0.87) (-0.58) (-1.22) (-1.69) (-0.69)

3 0.643 0.394 0.232 0.313 0.506 -0.137 0.481 0.243 -0.021 -0.148 -0.090 0.118 -0.124 0.084
(1.16) (0.73) (0.50) (0.53) (1.10) (-0.55) (0.97) (1.22) (-0.10) (-1.11) (-0.36) (0.86) (-0.51) (0.82)

4 0.802 0.621 0.489 0.463 0.463 -0.339 0.615 0.413* 0.201 0.107 0.066 0.084 -0.329 0.219
(1.51) (1.08) (0.94) (0.84) (0.95) (-1.49) (1.20) (1.95) (0.94) (0.51) (0.32) (0.49) (-1.42) (1.51)

High 0.648 0.501 0.432 0.648 0.317 -0.332 0.504 0.259 0.100 0.019 0.233 -0.079 -0.338 0.102
(1.12) (0.89) (0.69) (1.10) (0.59) (-1.40) (0.89) (0.96) (0.45) (0.08) (1.18) (-0.39) (-1.41) (0.51)

HML-B -0.122 0.129 -0.050 -0.033 0.097 0.219 0.150 -0.164 0.093 -0.085 -0.076 0.066 0.231 0.112
(-0.32) (0.42) (-0.11) (-0.09) (0.29) (0.56) (0.51) (-0.46) (0.31) (-0.19) (-0.20) (0.21) (0.60) (0.40)

All 0.594 0.277 0.377 0.225 0.305 -0.290 0.223* -0.127 0.001 -0.147 -0.069 -0.292
(1.29) (0.57) (0.80) (0.50) (0.71) (-1.51) (1.74) (-0.79) (0.01) (-1.25) (-0.89) (-1.51)

Panel B2: Portfolios Sorted by Brown Fund Ownership and ESG Rating (Nov 2012–Dec 2019)

Low 1.227*** 1.098*** 1.054*** 1.162*** 1.370*** 0.143 1.194*** -0.032 0.010 -0.142 -0.018 0.301** 0.333 0.048
(3.57) (3.84) (3.57) (4.31) (4.82) (0.61) (4.46) (-0.17) (0.08) (-1.30) (-0.14) (2.62) (1.41) (0.96)

2 1.222*** 1.244*** 1.119*** 1.414*** 1.181*** -0.041 1.244*** -0.113 -0.074 -0.161 0.097 -0.166 -0.054 -0.080
(2.97) (3.70) (3.05) (4.23) (3.73) (-0.16) (3.92) (-0.40) (-0.41) (-0.80) (0.74) (-1.51) (-0.20) (-0.70)

3 0.999** 1.014*** 1.298*** 1.165*** 1.053*** 0.054 1.128*** -0.532** -0.380* -0.098 -0.287 -0.308 0.224 -0.283*
(2.26) (2.70) (3.45) (2.99) (2.79) (0.24) (3.08) (-2.06) (-1.69) (-0.47) (-1.49) (-1.59) (0.97) (-1.74)

4 1.005** 1.203*** 1.275*** 1.293*** 1.176*** 0.171 1.188*** -0.444* -0.261 -0.073 -0.168 -0.291 0.153 -0.245
(2.50) (3.19) (3.19) (3.20) (3.00) (1.07) (3.16) (-1.93) (-1.18) (-0.33) (-1.00) (-1.41) (0.92) (-1.39)

High 0.951** 1.238*** 1.142*** 1.028** 1.217*** 0.265 1.118*** -0.523** -0.077 -0.318 -0.415* -0.275 0.248 -0.321
(2.32) (3.09) (2.98) (2.56) (3.08) (1.56) (2.89) (-2.23) (-0.33) (-1.37) (-1.90) (-1.43) (1.40) (-1.60)

HML-B -0.276 0.140 0.089 -0.135 -0.153 0.123 -0.076 -0.491* -0.088 -0.176 -0.397 -0.576** -0.085 -0.369
(-0.97) (0.51) (0.38) (-0.48) (-0.56) (0.47) (-0.33) (-1.91) (-0.29) (-0.64) (-1.29) (-2.20) (-0.32) (-1.54)

All 1.074*** 1.397*** 1.045*** 1.120*** 1.267*** 0.193 -0.251 0.073 -0.156 -0.105 0.121** 0.372*
(3.11) (4.22) (3.36) (3.92) (4.68) (1.07) (-1.58) (0.41) (-1.65) (-1.41) (1.99) (1.85)
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Table 5: Implied Cost of Capital of Portfolios Sorted by Mutual Fund Ownership and ESG Rating

In Panels A1 and A2, at the end of month t , stocks are first sorted into quintiles according to their green fund ownership.
Within each green fund ownership group, stocks are further sorted into quintiles according to their ESG ratings to generate 25
(5×5) portfolios. The low- (high)-ESG-rating and green-fund-ownership portfolios comprise the bottom (top) quintile of stocks
based on the ESG rating and green fund ownership, respectively. For each of the 25 portfolios, we compute the value-weighted
implied cost of capital (ICC) in month t+1 and rebalance the portfolios at the end of month t+1. We compute the ICC for
each stock-month following Hou et al. (2012) and Pástor et al. (2022). Panel A reports the time-series averages of the monthly
ICCs for each of the 25 portfolios and for the investment strategy of going long (short) in the high- (low)-ESG-rating stocks
(“HML-R”) and the investment strategy of going long (short) in the high- (low)-green-fund-ownership stocks (“HML-G”). The
column “All” reports similar statistics for portfolios sorted only by the ESG ratings, and the row “All” reports similar statistics
for portfolios sorted only by green fund ownership. The portfolio ICCs are further adjusted by the CAPM. Panels A1 and A2
report the subperiod results for January 2001–October 2012 and for November 2012–December 2019, respectively. Panels B1
and B2 report similar statistics when we replace green fund ownership with brown fund ownership. We identify green (brown)
funds as those with a fund-level ESG rating in the top (bottom) quintile across all funds at the end of each month. The
Newey-West adjusted t-statistics are shown in parentheses. Online Appendix Table B.1 provides a detailed definition for each
variable. Numbers with *, **, and *** are significant at the 10%, 5%, and 1% levels, respectively.

ICC CAPM-adjusted ICC

Ownership Stock ESG Stock ESG

Low 2 3 4 High HML-R All Low 2 3 4 High HML-R All

Panel A1: Portfolios Sorted by Green Fund Ownership and ESG Rating (Jan 2001–Oct 2012)

Low 0.754*** 0.609*** 0.554*** 0.695*** 0.727*** -0.028** 0.728*** 0.603*** 0.457*** 0.401*** 0.544*** 0.574*** -0.029*** 0.575***
(55.65) (15.41) (11.08) (24.75) (56.30) (-2.42) (60.93) (19.87) (9.40) (7.17) (15.39) (19.54) (-2.63) (19.73)

2 0.705*** 0.654*** 0.612*** 0.617*** 0.717*** 0.013 0.692*** 0.552*** 0.502*** 0.460*** 0.464*** 0.565*** 0.013 0.539***
(35.39) (23.46) (16.08) (17.99) (60.99) (0.77) (47.20) (16.41) (11.53) (8.75) (11.20) (20.23) (0.79) (17.33)

3 0.699*** 0.676*** 0.643*** 0.607*** 0.721*** 0.022 0.690*** 0.547*** 0.523*** 0.491*** 0.455*** 0.568*** 0.022 0.538***
(32.73) (28.84) (24.81) (19.02) (53.95) (1.17) (49.01) (15.24) (13.46) (11.45) (11.33) (20.33) (1.15) (17.07)

4 0.684*** 0.630*** 0.677*** 0.643*** 0.653*** -0.031* 0.648*** 0.531*** 0.477*** 0.524*** 0.491*** 0.500*** -0.031* 0.495***
(36.14) (33.50) (38.66) (27.80) (32.98) (-1.79) (40.35) (14.32) (16.07) (15.46) (13.18) (14.37) (-1.83) (15.22)

High 0.703*** 0.614*** 0.647*** 0.616*** 0.554*** -0.149*** 0.613*** 0.551*** 0.461*** 0.495*** 0.464*** 0.401*** -0.149*** 0.461***
(35.28) (16.97) (42.33) (47.03) (55.17) (-11.05) (47.91) (15.89) (9.87) (14.75) (14.56) (14.65) (-10.92) (14.90)

HML-G -0.051** 0.004 0.094* -0.079** -0.173*** -0.122*** -0.114*** -0.052*** 0.004 0.094* -0.080** -0.173*** -0.121*** -0.114***
(-2.60) (0.08) (1.83) (-2.52) (-12.15) (-6.91) (-7.38) (-2.63) (0.06) (1.83) (-2.59) (-12.27) (-6.91) (-7.42)

All 0.681*** 0.608*** 0.619*** 0.581*** 0.578*** -0.103*** 0.528*** 0.455*** 0.467*** 0.429*** 0.425*** -0.103***
(37.33) (19.29) (19.01) (18.19) (56.78) (-10.44) (14.85) (9.13) (9.89) (10.36) (14.45) (-10.39)

Panel A2: Portfolios Sorted by Green Fund Ownership and ESG Rating (Nov 2012–Dec 2019)

Low 0.505*** 0.498*** 0.497*** 0.472*** 0.486*** -0.019 0.491*** 0.454*** 0.449*** 0.450*** 0.419*** 0.434*** -0.020 0.440***
(14.01) (13.77) (14.02) (13.58) (14.10) (-1.47) (14.24) (12.06) (12.33) (13.57) (14.23) (13.33) (-1.39) (13.44)

2 0.575*** 0.576*** 0.545*** 0.547*** 0.557*** -0.019 0.560*** 0.519*** 0.523*** 0.488*** 0.488*** 0.499*** -0.020 0.503***
(45.54) (44.22) (33.38) (39.10) (40.83) (-1.28) (50.39) (22.37) (22.52) (19.51) (23.20) (29.75) (-1.31) (24.50)

3 0.575*** 0.498*** 0.551*** 0.568*** 0.604*** 0.029*** 0.559*** 0.515*** 0.438*** 0.494*** 0.512*** 0.548*** 0.033*** 0.501***
(35.80) (39.59) (60.19) (52.16) (48.58) (3.16) (52.84) (16.69) (18.00) (25.34) (27.13) (23.07) (3.14) (21.58)

4 0.552*** 0.503*** 0.551*** 0.533*** 0.517*** -0.035 0.517*** 0.490*** 0.445*** 0.492*** 0.478*** 0.458*** -0.033 0.458***
(24.88) (25.68) (31.79) (47.16) (21.47) (-1.09) (36.34) (14.12) (16.78) (17.57) (31.31) (22.50) (-0.97) (20.44)

High 0.577*** 0.608*** 0.599*** 0.563*** 0.469*** -0.108*** 0.547*** 0.518*** 0.552*** 0.541*** 0.505*** 0.410*** -0.108*** 0.488***
(24.94) (63.00) (51.80) (39.74) (25.74) (-6.60) (38.81) (15.08) (27.83) (22.57) (17.97) (12.26) (-6.57) (17.21)

HML-G 0.072 0.110*** 0.102** 0.091** -0.017 -0.089*** 0.055 0.064 0.103*** 0.091** 0.085** -0.024 -0.088*** 0.048
(1.42) (3.02) (2.53) (2.21) (-0.41) (-4.08) (1.36) (1.37) (3.09) (2.50) (2.24) (-0.62) (-3.76) (1.29)

All 0.563*** 0.526*** 0.576*** 0.585*** 0.512*** -0.052*** 0.503*** 0.467*** 0.519*** 0.528*** 0.453*** -0.050***
(31.18) (28.88) (42.88) (80.74) (36.04) (-4.50) (17.57) (14.15) (21.17) (28.35) (16.00) (-4.43)

Panel B1: Portfolios Sorted by Brown Fund Ownership and ESG Rating (Jan 2001–Oct 2012)

Low 0.610*** 0.619*** 0.540*** 0.613*** 0.548*** -0.061*** 0.581*** 0.457*** 0.467*** 0.386*** 0.461*** 0.396*** -0.061*** 0.428***
(26.72) (18.41) (14.81) (40.67) (51.97) (-3.54) (45.63) (12.45) (11.56) (8.84) (15.29) (15.11) (-3.54) (14.58)

2 0.647*** 0.618*** 0.599*** 0.635*** 0.614*** -0.033*** 0.634*** 0.494*** 0.465*** 0.446*** 0.482*** 0.462*** -0.032*** 0.481***
(23.19) (18.84) (16.90) (33.32) (28.42) (-2.99) (28.00) (12.17) (11.03) (8.07) (13.93) (13.10) (-2.94) (13.00)

3 0.668*** 0.606*** 0.601*** 0.599*** 0.657*** -0.011 0.657*** 0.515*** 0.454*** 0.448*** 0.447*** 0.505*** -0.010 0.504***
(30.52) (18.46) (17.85) (19.24) (39.33) (-0.90) (38.57) (13.27) (9.20) (9.24) (10.99) (15.68) (-0.86) (14.99)

4 0.708*** 0.690*** 0.643*** 0.648*** 0.722*** 0.014 0.694*** 0.555*** 0.538*** 0.490*** 0.496*** 0.569*** 0.014 0.541***
(47.35) (48.08) (31.16) (25.77) (54.40) (1.06) (59.61) (17.84) (19.42) (15.22) (13.50) (21.50) (1.09) (18.80)

High 0.743*** 0.705*** 0.678*** 0.722*** 0.732*** -0.011 0.720*** 0.590*** 0.553*** 0.526*** 0.570*** 0.580*** -0.011 0.568***
(54.47) (50.28) (31.27) (56.58) (54.89) (-1.37) (58.88) (19.90) (17.52) (15.88) (18.11) (19.67) (-1.36) (18.87)

HML-B 0.133*** 0.087** 0.138*** 0.109*** 0.184*** 0.051*** 0.140*** 0.134*** 0.086** 0.140*** 0.109*** 0.184*** 0.050*** 0.140***
(5.04) (2.52) (3.24) (6.42) (11.06) (2.80) (8.17) (5.08) (2.51) (3.25) (6.38) (11.08) (2.78) (8.20)

All 0.681*** 0.608*** 0.619*** 0.581*** 0.578*** -0.103*** 0.528*** 0.455*** 0.467*** 0.429*** 0.425*** -0.103***
(37.33) (19.29) (19.01) (18.19) (56.78) (-10.44) (14.85) (9.13) (9.89) (10.36) (14.45) (-10.39)

Panel B2: Portfolios Sorted by Brown Fund Ownership and ESG Rating (Nov 2012–Dec 2019)

Low 0.545*** 0.579*** 0.594*** 0.558*** 0.467*** -0.078*** 0.537*** 0.486*** 0.523*** 0.536*** 0.498*** 0.408*** -0.077*** 0.479***
(21.62) (42.57) (73.88) (42.40) (25.45) (-5.04) (41.03) (12.56) (20.61) (30.54) (19.72) (12.20) (-5.01) (17.55)

2 0.532*** 0.559*** 0.566*** 0.562*** 0.546*** 0.014 0.552*** 0.470*** 0.500*** 0.508*** 0.501*** 0.488*** 0.018 0.493***
(26.62) (33.16) (35.96) (43.45) (41.86) (0.93) (40.70) (17.76) (18.01) (21.28) (26.18) (21.24) (1.14) (22.16)

3 0.551*** 0.526*** 0.560*** 0.528*** 0.523*** -0.028** 0.538*** 0.497*** 0.471*** 0.502*** 0.472*** 0.465*** -0.031** 0.482***
(38.18) (39.14) (32.09) (41.62) (46.05) (-2.41) (45.39) (17.39) (18.27) (16.05) (22.27) (21.01) (-2.42) (19.51)

4 0.579*** 0.542*** 0.555*** 0.553*** 0.548*** -0.031*** 0.556*** 0.520*** 0.483*** 0.496*** 0.495*** 0.490*** -0.030** 0.497***
(42.01) (37.32) (31.58) (54.32) (61.81) (-2.66) (47.13) (20.23) (18.19) (16.43) (21.73) (24.40) (-2.59) (20.17)

High 0.607*** 0.577*** 0.582*** 0.593*** 0.596*** -0.012 0.590*** 0.551*** 0.521*** 0.526*** 0.535*** 0.540*** -0.011 0.534***
(48.49) (35.34) (35.97) (48.22) (95.72) (-1.40) (47.80) (23.38) (17.91) (17.98) (20.98) (27.57) (-1.34) (21.12)

HML-B 0.062*** -0.002 -0.012 0.035*** 0.128*** 0.066*** 0.052*** 0.066*** -0.002 -0.010 0.037*** 0.132*** 0.066*** 0.055***
(2.82) (-0.23) (-0.66) (4.13) (8.75) (3.39) (8.26) (3.00) (-0.18) (-0.55) (4.50) (8.72) (3.29) (9.06)

All 0.563*** 0.526*** 0.576*** 0.585*** 0.512*** -0.052*** 0.503*** 0.467*** 0.519*** 0.528*** 0.453*** -0.050***
(31.18) (28.88) (42.88) (80.74) (36.04) (-4.50) (17.57) (14.15) (21.17) (28.35) (16.00) (-4.43)
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Table 6: Stock Price Informativeness

This table presents the results of the following annual Fama-MacBeth regression and their corresponding Newey-West adjusted
t-statistics:

Ei,y+h

Ai,y
= α+ β1Log

(
Mi,y

Ai,y

)
+ β2Log

(
Mi,y

Ai,y

)
× ESGDevi,y + β3Log

(
Mi,y

Ai,y

)
× ESGDispi,y

+ β4ESGDevi,y + β5ESGDispi,y + β6Log

(
Ei,y

Ai,y

)
+ cNi,y + εi,y+h,

where Ei,y+h is the earnings before interest and taxes of stock i in year y+h, Ai,y is the total assets, Mi,y is the market
capitalization, ESGDevi,y is the departure from green neutrality, and ESGDispi,y is the stock-level heterogeneity in the fund
ESG preferences. Vector N stacks all other stock-level control variables, namely, the IO, Log(Asset), Leverage, Tangibility,
Log(Sales), Cash, Log(Analyst Coverage), and Analyst Dispersion. Models 1-4, Models 5-8, and Models 9-12 report the results
when h = 1, h = 3, and h = 5, respectively. Online Appendix Table B.1 provides a detailed definition for each variable.
Numbers with *, **, and *** are significant at the 10%, 5%, and 1% levels, respectively.

Dep. Var. = Ei,y+1/Ai,y Ei,y+3/Ai,y Ei,y+5/Ai,y

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12

Log(M/A) 0.012*** 0.008** 0.001 -0.001 0.016** 0.007 -0.006 -0.012 0.026** 0.017 -0.004 -0.008
(4.94) (2.73) (0.40) (-0.29) (2.67) (0.92) (-0.89) (-1.52) (2.64) (1.59) (-0.35) (-0.62)

Log(M/A) × Stock ESGDev 0.027*** 0.022*** 0.060*** 0.049*** 0.061*** 0.050**
(4.37) (3.45) (5.53) (4.41) (3.67) (2.95)

Log(M/A) × Stock ESGDisp 0.075*** 0.068*** 0.150*** 0.138*** 0.201*** 0.178***
(7.18) (6.18) (6.65) (6.48) (6.87) (5.62)

Stock ESGDev -0.000 -0.001 0.008 0.007 -0.004 -0.005
(-0.10) (-0.24) (0.56) (0.52) (-0.26) (-0.37)

Stock ESGDisp 0.019* 0.019* 0.048** 0.049** 0.066** 0.068**
(1.81) (1.85) (2.49) (2.76) (2.32) (2.49)

E/A 0.827*** 0.824*** 0.822*** 0.820*** 0.822*** 0.815*** 0.811*** 0.807*** 0.839*** 0.831*** 0.826*** 0.821***
(26.77) (26.52) (26.55) (26.44) (17.82) (17.69) (17.39) (17.38) (17.88) (17.91) (17.51) (17.69)

IO 0.002 0.003 0.003 0.003 -0.005 -0.003 -0.005 -0.003 -0.001 0.001 -0.002 -0.000
(0.66) (0.93) (0.81) (1.00) (-0.46) (-0.26) (-0.44) (-0.28) (-0.08) (0.05) (-0.11) (-0.02)

Log(Asset) -0.008*** -0.008*** -0.008*** -0.008*** -0.016*** -0.016*** -0.016*** -0.016*** -0.015*** -0.015*** -0.016*** -0.016***
(-4.50) (-4.68) (-4.82) (-4.99) (-4.49) (-4.49) (-4.72) (-4.72) (-4.27) (-4.49) (-4.61) (-4.84)

Leverage 0.042*** 0.042*** 0.041*** 0.041*** 0.048*** 0.049*** 0.046*** 0.048*** 0.055*** 0.057*** 0.053*** 0.055***
(9.04) (9.10) (8.90) (8.92) (4.12) (4.21) (4.08) (4.18) (3.13) (3.25) (3.12) (3.24)

Tangibility -0.006 -0.006 -0.006 -0.006 -0.017 -0.015 -0.017 -0.015 -0.028 -0.027 -0.027 -0.027
(-1.03) (-0.98) (-0.94) (-0.91) (-0.98) (-0.91) (-0.95) (-0.89) (-1.21) (-1.16) (-1.16) (-1.14)

Log(Sales) 0.011*** 0.011*** 0.012*** 0.012*** 0.019*** 0.018*** 0.019*** 0.019*** 0.017*** 0.018*** 0.018*** 0.018***
(7.12) (7.18) (7.44) (7.54) (6.65) (6.43) (6.93) (6.73) (6.41) (6.40) (6.82) (6.84)

Cash -0.062*** -0.061*** -0.061*** -0.060*** -0.070** -0.066** -0.068** -0.066** -0.050 -0.048 -0.047 -0.046
(-4.81) (-4.77) (-4.89) (-4.88) (-2.55) (-2.45) (-2.55) (-2.48) (-1.06) (-1.01) (-1.01) (-1.00)

Log(Analyst Coverage) -0.002 -0.002 -0.003 -0.003 0.002 0.002 0.001 0.001 0.006 0.007 0.005 0.006
(-1.28) (-1.20) (-1.45) (-1.39) (0.48) (0.50) (0.33) (0.35) (1.39) (1.42) (1.19) (1.25)

Analyst Dispersion -0.009** -0.009** -0.009** -0.009** -0.004 -0.003 -0.004 -0.003 -0.003 -0.004 -0.004 -0.004
(-2.86) (-2.84) (-2.87) (-2.85) (-1.27) (-1.12) (-1.29) (-1.14) (-0.80) (-0.78) (-0.90) (-0.87)

Constant -0.008 -0.010 -0.011 -0.012* 0.010 0.007 0.004 0.002 0.019 0.016 0.010 0.009
(-1.24) (-1.60) (-1.73) (-1.99) (0.77) (0.57) (0.28) (0.16) (1.31) (1.09) (0.73) (0.62)

Obs 51,699 51,699 51,699 51,699 41,104 41,104 41,104 41,104 32,266 32,266 32,266 32,266
R-squared 0.736 0.737 0.738 0.738 0.477 0.481 0.480 0.483 0.336 0.338 0.340 0.342
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Figure 1: Calibration - Characteristics of the Marginal Fund

This figure shows the characteristics of the optimal information acquisition and the portfolio policy of an
infinitely small agent in an economy where two masses of agents coexist: ESG indifferent and ESG perceptive.
The ESG preference of the marginal agent δj is allowed to vary. Graphs (a) to (h) show the optimal signal
precision, the total cost of information acquisition, the expected difference in the portfolio positions relative
to the market, the expected nonpecuniary benefits of the portfolio, the expected dispersion of the portfolio
positions, the tracking error, the expected net payoff, and the CAPM alpha of the portfolio. Graph (i)
shows the certainty equivalent loss, relative to the expected net payoff, that is perceived by the marginal
agent when forced to acquire the information and implement the conditional portfolio of an agent with ESG
preferences δsub.
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Figure 2: Calibration - Equilibrium Asset Pricing

Graphs (a) show the equilibrium aggregate signal precision for the green and brown assets in the economy.
Graphs (b) show the price informativeness of the assets. Graphs (c) show the aggregate information ac-
quisition cost. ESG-perceptive funds have ESG preferences of δP and represent a fraction φ of the total
population, while ESG-indifferent funds have zero ESG preferences (δI = 0). For the graphs in the top row,
δP varies between 0 and 2, while φ = 0.5. For the graphs in the bottom row, δP = 1, while φ varies between
0 and 1.

0 0.5 1 1.5 2

0.42

0.43

0.44

0.45

0.46

0.47

0 0.5 1 1.5 2

4.4

4.45

4.5

4.55

4.6

4.65
Brown

Green

0 0.5 1 1.5 2

54

56

58

60

62

64

0 0.5 1

0.426

0.428

0.43

0.432

0.434

0.436

0.438

0.44

0 0.5 1

4.43

4.44

4.45

4.46

4.47

4.48

4.49

4.5

Brown

Green

0 0.5 1

54.5

55

55.5

56

56.5

57

57.5

54



Active Fund Management when ESG Matters:
An Equilibrium Perspective

Online Appendix

Doron Avramov Si Cheng Andrea Tarelli

This Online Appendix presents the proofs and derivations, as well as the supplementary empirical results discussed in
the paper.
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• A.1. Solving for asset prices

• A.2. Solving for information decisions

• A.3. Total signal precision

• A.4. Sensitivity of the optimal signal precision to ESG preferences

• A.5. Sensitivity of the optimal aggregate signal precision to the ESG score

• A.6. Portfolio positions and ESG profile

• A.7. Expected utility loss from following a suboptimal strategy and information acquisition policy

• A.8. Portfolio dispersion and tracking error

• A.9. Expected net payoff and alpha

• A.10. Price informativeness

Section B. Supplementary material

• Table B.1. Variables Definitions

• Table B.2. Performance of Portfolios Sorted by Mutual Fund Ownership and ESG Rating

• Table B.3. Implied Cost of Capital of Portfolios Sorted by Mutual Fund Ownership and ESG Rating

A Derivations
Before proceeding with the derivations, we briefly describe the economic setting. Following Kacperczyk et al. (2016),
asset payoffs are expressed in matrix form

f = µ+ Γz, (A.1)
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where f , µ, z ∼ MN (0,Σ), and Σ are the matrix versions of fi, µi, zi and σi, respectively, while Γ is given by

Γ =



1 0 · · · 0 b1

0 1 · · · 0 b2
...

...
. . .

...
...

0 0 · · · 1 bN−1

0 0 · · · 0 1


, (A.2)

and its inverse is given by

Γ−1 =



1 0 · · · 0 −b1
0 1 · · · 0 −b2
...

...
. . .

...
...

0 0 · · · 1 −bN−1

0 0 · · · 0 1


. (A.3)

The risk factors can then be rewritten as
F = Γ−1f = Γ−1µ+ z. (A.4)

A risk factor supply is denoted by X̄i + Xi, where X̄i is the mean supply and Xi ∼ N (0, σX i) is the random supply
noise. While in the text, the supply noise σX i is assumed to be constant across assets, in the derivations that follow,
we consider the general case of heterogeneous supply noise. Let

(
X̄ +X

)
denote the supply vector of the risk factors,

where X ∼ MN (0,ΣX ), and let x̄+ x denote the supply of the risky assets. It follows that x̄+ x = Γ−1
(
X̄ +X

)
.

It is assumed that each of the agents has mean-variance preferences, given by

Uj (Wj , Gj , S1j , S2j , . . . , SNj) = E [Wj ]−
ρ

2
Var [Wj ] + δjE [Gj ] , (A.5)

where ρ is risk aversion, δj represents the preference for ESG with a higher value reflecting a stronger preference,
Gj =

∑N
i=1 qijgi is the ESG score of the portfolio, Wj stands for the agent’s terminal wealth that satisfies the budget

constraint Wj = W0j +
∑N
i=1 qij (fi − pi) −

∑N
i=1 cij (Sij), pi is the price of the risky asset, and

∑N
i=1 cij (Sij) is

the total cost of information acquisition, with cij (Sij) standing for the cost per risk factor i. The ESG preference
parameter δj is assumed to be nonnegative and strictly positive for a nonzero measure of agents in the economy.

The time-1 expected utility is

U1j (Wj , Gj ,Sj) = E1j [U2j (Wj , Gj ,Sj)] = E1j

[
E2j [Wj ]−

ρ

2
Var2j [Wj ] + δjE2j [Gj ]

]
. (A.6)

The equilibrium is derived by backward induction, first optimizing the portfolio allocation in period 2 and then
optimizing the information acquisition in period 1. At time 2, agent j chooses the portfolio that maximizes the
expected utility

U2j (Wj , Gj ,Sj) = E2j [Wj ]−
ρ

2
Var2j [Wj ] + δjE2j [Gj ] , (A.7)

where E2j [.] and Var2j [.] denote the expectation and variance conditional on the information available in period 2
that includes the signals acquired in period 1, respectively. Let P = Γ−1p denote the vector of risk factor prices, and
let Qj = Γ′qj denote the positions in the risk factors. As f = ΓF , p = ΓP , and q′

j = Q′
jΓ

−1, the budget constraint
becomes Wj = rW0j +Q′

j (F −Pr) −
∑N
i=1 cij (Sij), and the ESG scores of the risk factors are G = Γ−1g. Hence,

the individual ESG score of a risk factor is Gi = gi− bigN for i < N and GN = gN . Assuming that the composite asset
is green neutral, the risk factors and the corresponding risky assets have the same ESG profile, Gi = gi.

A - 2



A.1 Solving for asset prices
The equilibrium asset prices clear the market. The time-2 vector of prices is conjectured to be

P =
1

r
(A+Bz +CX +DG) . (A.8)

Our aim is to find the price coefficients.
To start, market clearing requires that ∫

Qjdj = X̄ +X . (A.9)

Agent j acquires information represented by the collection of signals ηj

ηj = z + εj , εj ∼ MN
(
0,S−1

j

)
, (A.10)

where Sj is a diagonal matrix with nonnegative elements Sij . At time 1, the agent chooses Sij to maximize

U1j (Wj , Gj ,Sj) = E1j

[
E2j [Wj ]−

ρ

2
Var2j [Wj ] + δjE2j [Gj ]

]
. (A.11)

The signal from prices takes the form
ηp = z + εp εp ∼ N (0,Σp) , (A.12)

where Σp is recovered below. In particular,

ηp = B−1 (Pr −A−DG)

= B−1 (Bz +CX )

= z +B−1CX︸ ︷︷ ︸
εp

, (A.13)

where εp ∼ N (0,Σp) and Σp = B−1CΣXC ′B−1′ (Σ−1
p = B′C−1′Σ−1

X C−1B).
The posterior beliefs about z can then be represented by the normal density with moments

ẑj = Σ̂j

(
Sjηj +Σ−1

p ηp
)
, (A.14)

Σ̂
−1

j = Σ−1 + Sj +Σ−1
p . (A.15)

As F = Γ−1µ+ z, the time-2 conditional expected payoff of the risk factors is

E2j [F ] = Γ−1µ+ ẑj . (A.16)

The posterior distribution of the risk factor payoffs is then

F ∼ N (E2j [F ] ,Var2j [F ]) , (A.17)

where Var2j [F ] = Σ̂j . The time-2 portfolio that optimally invests in the risk factors is given by

Qj =
1

ρ
Σ̂

−1

j (E2j [F ]−Pr + δjG) . (A.18)
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From Equation (A.8), we obtain

X = C−1 (Pr −A−Bz −DG) = C−1B
(
ηp − z

)
. (A.19)

Aggregating through the equations above yields

X̄ +X = Q̄ =

∫
j

Qjdj

=

∫
j

1

ρ
Σ̂

−1

j (E2j [F ]−Pr + δjG) dj

=

∫
j

1

ρ
Σ̂

−1

j

(
Γ−1µ+ E2j [z]−A−Bηp −DG + δjG

)
dj

=
1

ρ

(∫
j

(
Sjηj +Σ−1

p ηp
)
dj +

(∫
j

Σ̂
−1

j δjdj

)
G +

(∫
j

Σ̂
−1

j dj

)(
Γ−1µ−A−Bηp −DG

))
=

1

ρ

(
S̄z +Σ−1

p ηp +

(∫
j

Σ̂
−1

j δjdj

)
G + Σ̄

−1 (
Γ−1µ−A−Bηp −DG

))
, (A.20)

where Σ̄
−1

=
∫
j
Σ̂

−1

j dj is a matrix with diagonal elements σ̄−1
i =

∫
j
σ̂−1
ij dj, and S̄ =

∫
j
Sjdj. In deriving the last

expression, it is assumed that the average noise of the private signals is zero. Then, substituting Equation (A.19) into
Equation (A.20) leads to

X̄ +C−1B
(
ηp − z

)
=

1

ρ

(
S̄z +Σ−1

p ηp +

(∫
j

Σ̂
−1

j δjdj

)
G + Σ̄

−1 (
Γ−1µ−A−Bηp −DG

))
. (A.21)

By matching coefficients, we obtain 

X̄ = 1
ρΣ̄

−1 (
Γ−1µ−A

)
C−1B = 1

ρ

(
Σ−1
p − Σ̄

−1
B
)

−C−1B = 1
ρ S̄

D = Σ̄
∫
j
Σ̂

−1

j δjdj.

(A.22)

The price coefficients then follow: 

A = Γ−1µ− ρΣ̄X̄

B = Σ̄
(
Σ−1
p + S̄

)
= I− Σ̄Σ−1

C = −ρΣ̄
(
I+Σ−1

p S̄−1
)

D = Σ̄
∫
j
Σ̂

−1

j δjdj ≡ δ̄,

(A.23)

where δ̄ is a diagonal matrix with i-th element equal to δ̄i = σ̄i
∫
j
σ̂−1
ij δjdj. As B−1C = −ρS̄−1, we obtain

Σp = B−1CΣXC ′B−1′ = ρ2S̄−1ΣX S̄−1. (A.24)

It follows that Σ−1
p = 1

ρ2 S̄Σ
−1
X S̄ and C = −ρΣ̄

(
I+ 1

ρ2 S̄Σ
−1
X

)
. Thus, the diagonal elements of Σ̄−1

= Σ−1+ S̄+Σ−1
p

can be written as

σ̄−1
i = σ−1

i + S̄i +
S̄2
i

ρ2σX i
. (A.25)

Next, the vector of risk factor prices (multiplied by the gross rate) is given by

Pr = Γ−1µ− ρΣ̄X̄ +
(
I− Σ̄Σ−1

)
z − ρΣ̄

(
I+

1

ρ2
S̄Σ−1

X

)
X + δ̄G. (A.26)
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The terms of the diagonal matrix I − Σ̄Σ−1 are all positive, expressed by 1 − σ−1
i /

(
σ−1
i + S̄i +

S̄2
i

ρ2σXi

)
. Using the

relations P = Γ−1p and X = Γx, the equilibrium asset prices are then given by

pr = µ− ρΓΣ̄Γx̄+ Γ
(
I− Σ̄Σ−1

)
z − ρΓΣ̄

(
I+

1

ρ2
S̄Σ−1

X

)
Γx+ Γδ̄G. (A.27)

Proposition 1 follows by substituting Γ from Equation (A.2).

A.2 Solving for information decisions
Our aim is to derive the time-1 expected utility. Then, the information decision is based on equating the marginal
benefit from information acquisition to the marginal cost. To start, the agent’s wealth can be expressed as

Wj = rW0j +
1

ρ
(E2j [F ]−Pr + δjG)′ Σ̂

−1

j (F −Pr)− cj (Sj) . (A.28)

Then, the time-1 expected utility is

U1j = E1j

[
E2j

[
rW0j +

1

ρ
(E2j [F ]−Pr + δjG)′ Σ̂

−1

j (F −Pr)
]]

− ρ

2
E1j

[
Var2j

[
rW0j +

1

ρ
(E2j [F ]−Pr + δjG)′ Σ̂

−1

j (F −Pr)
]]

+
δj
ρ

E1j

[
(E2j [F ]−Pr + δjG)′ Σ̂

−1

j G
]
− cj (Sj) ,

= rW0j + E1j

[
1

ρ
(E2j [F ]−Pr + δjG)′ Σ̂

−1

j (E2j [F ]−Pr)
]

− ρ

2
E1j

[
Var2j

[
1

ρ
(E2j [F ]−Pr + δjG)′ Σ̂

−1

j (F −Pr)
]]

+
δj
ρ

E1j

[
(E2j [F ]−Pr + δjG)′ Σ̂

−1

j

]
G − cj (Sj) . (A.29)

To further characterize the above expression, we use Equations (A.4) and (A.26) to rewrite the net payoff as

F −Pr = Γ−1µ+ z −
(
Γ−1µ− ρΣ̄X̄ +

(
I− Σ̄Σ−1

)
z − ρΣ̄

(
I+

1

ρ2
S̄Σ−1

X

)
X + δ̄G

)
= ρΣ̄X̄ + Σ̄Σ−1z + ρΣ̄

(
I+

1

ρ2
S̄Σ−1

X

)
X − δ̄G

= w +V
1
2u, (A.30)

where u ∼ N (0, I), w = ρΣ̄X̄ − δ̄G, V
1
2u = Σ̄Σ−1z + ρΣ̄

(
I+ 1

ρ2 S̄Σ
−1
X

)
X , and V is given by

V = Σ̄Σ−1Σ̄+ ρ2Σ̄

(
I+

1

ρ2
S̄Σ−1

X

)
ΣX

(
I+

1

ρ2
Σ−1

X S̄

)
Σ̄,

= Σ̄

(
Σ−1 + ρ2

(
I+

1

ρ2
S̄Σ−1

X

)
ΣX

(
I+

1

ρ2
Σ−1

X S̄

))
Σ̄,

= Σ̄

Σ−1 + ρ2ΣX + S̄+ S̄+
1

ρ2
S̄Σ−1

X S̄︸ ︷︷ ︸
Σ−1

p

 Σ̄,
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= Σ̄
(
ρ2ΣX + S̄+ Σ̄

−1
)
Σ̄. (A.31)

The matrix V is diagonal with elements Vii = σ̄i
(
1 +

(
ρ2σX i + S̄i

)
σ̄i
)
.

The time-2 expected net payoff is E2j [F ]−Pr = E2j [F ]−F +F −Pr, while the time-1 variance is

Var1j [E2j [F ]−Pr] = Var1j [E2j [F ]−F ] + Var1j [F −Pr] + 2Cov1j [E2j [F ]−F ,F −Pr] . (A.32)

We solve each of the variance components.
From Equations (A.4) and (A.16), we obtain

E2j [F ]−F = Γ−1µ+ Σ̂jSj (z + εj) + Σ̂jΣ
−1
p (z + εp)− Γ−1µ− z

= Σ̂j

((
Sj +Σ−1

p − Σ̂
−1

j

)
z + Sjεj +Σ−1

p εp

)
= Σ̂j

(
−Σ−1z + Sjεj +Σ−1

p εp
)
. (A.33)

The time-1 expected value of the above expression is zero. Then, as z, εj , and εp are independent, the time-1 variance
is equal to

Var1j [E2j [F ]−F ] = Σ̂j

(
Σ−1 + Sj +Σ−1

p

)︸ ︷︷ ︸
Σ̂

−1
j

Σ̂
′
j = Σ̂j . (A.34)

From Equation (A.30), we obtain Var1j [F −Pr] = V. To solve for the third term in Equation (A.32), we first express
the net payoff as

F −Pr = Γ−1µ+ z −A−B (z + εp)−DG

= Γ−1µ+ z − Γ−1µ+ ρΣ̄X̄ −
(
I− Σ̄Σ−1

)
(z + εp)− δ̄G

= ρΣ̄X̄ + Σ̄Σ−1z −
(
I− Σ̄Σ−1

)
εp − δ̄G. (A.35)

Then, the third term is

Cov1j [E2j [F ]−F ,F −Pr] = Cov1

[
Σ̂j

(
−Σ−1z + Sjεj +Σ−1

p εp
)
, Σ̄Σ−1z −

(
I− Σ̄Σ−1

)
εp

]
= Cov1

[
−Σ̂jΣ

−1z + Σ̂jΣ
−1
p εp, Σ̄Σ−1z −

(
I− Σ̄Σ−1

)
εp

]
= −Σ̂jΣ

−1ΣΣ−1Σ̄− Σ̂jΣ
−1
p Σp

(
I−Σ−1Σ̄

)
= −Σ̂jΣ

−1Σ̄− Σ̂j

(
I−Σ−1Σ̄

)
= −Σ̂j . (A.36)

Aggregating through the three terms, the time-1 variance in Equation (A.32) is

Var1j [E2j [F ]−Pr] = Σ̂j +V − 2Σ̂j = V − Σ̂j

= Σ̄
(
ρ2ΣX + S̄+ Σ̄

−1
)
Σ̄− Σ̂j , (A.37)

which is a diagonal matrix with elements

(Var1j [E2j [F ]−Pr])ii = σ̄i
(
1 +

(
ρ2σX i + S̄i

)
σ̄i
)
− σ̂ij = (σ̄i − σ̂ij) +

(
ρ2σX i + S̄i

)
σ̄2
i . (A.38)
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The time-1 distribution of the expected excess payoff is

E2j [F ]−Pr ∼ MN
(
w,V − Σ̂j

)
. (A.39)

Equation (A.29) can be rewritten as

U1j = rW0j +
1

ρ
E1j

[
(E2j [F ]−Pr)′ Σ̂

−1

j (E2j [F ]−Pr)
]

+
δj
ρ

E1j

[
G′Σ̂

−1

j (E2j [F ]−Pr)
]

− ρ

2
E1j

[
Var2j

[
1

ρ
(E2j [F ]−Pr + δjG)′ Σ̂

−1

j (F −Pr)
]]

+
δj
ρ

E1j

[
(E2j [F ]−Pr)′ Σ̂

−1

j

]
G

+
δ2j
ρ
G′Σ̂

−1

j G − cj (Sj)

= rW0j +
1

ρ
E1j

[
(E2j [F ]−Pr)′ Σ̂

−1

j (E2j [F ]−Pr)
]

+
δj
ρ
G′Σ̂

−1

j E1j [E2j [F ]−Pr]

− 1

2ρ
E1j

[
Var2j

[
(E2j [F ]−Pr + δjG)′ Σ̂

−1

j (F −Pr)
]]

+
δj
ρ

E1j

[
(E2j [F ]−Pr)′ Σ̂

−1

j

]
G

+
δ2j
ρ
G′Σ̂

−1

j G − cj (Sj) . (A.40)

Then, the first term in Equation (A.40) can be expressed as

E1j

[
(E2j [F ]−Pr)′ Σ̂

−1

j (E2j [F ]−Pr)
]
= E1j [m

′
1m1] , (A.41)

where m1 = Σ̂
− 1

2

j (E2j [F ]−Pr), E1j [m1] = Σ̂
− 1

2

j w, and Var1j [m1] = Σ̂
− 1

2

j

(
V − Σ̂j

)
Σ̂

− 1
2

j = Σ̂
−1

j V − I. Then

m1 ∼ MN
(
Σ̂

− 1
2

j w, Σ̂
−1

j V − I

)
. Hence,

E1j

[
(E2j [F ]−Pr)′ Σ̂

−1

j (E2j [F ]−Pr)
]

= E1j [m
′
1m1] = tr

(
Σ̂

−1

j V − I
)
+w′Σ̂

−1

j w

=

N∑
i=1

σ̄i + (ρ2σX i + S̄i
)
σ̄2
i +

ρX̄iσ̄i − δ̄iGi︸ ︷︷ ︸
wi

2
(σ−1

i + Sij +
S̄2
i

ρ2σX i

)
−N, (A.42)

where wi = ρX̄iσ̄i − δ̄iGi. The second term in Equation (A.40) is E1j [E2j [F ]−Pr] = w, while the third term is

E1j

[
Var2j

[
(E2j [F ]−Pr + δjG)′ Σ̂

−1

j (F −Pr)
]]

= E1j

(E2j [F ]−Pr + δjG)′ Σ̂
−1

j Var2j [F ]︸ ︷︷ ︸
Σ̂j

Σ̂
−1

j (E2j [F ]−Pr + δjG)
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= E1j

[
(E2j [F ]−Pr + δjG)′ Σ̂

−1

j (E2j [F ]−Pr + δjG)
]

= tr
(
Σ̂

−1

j V − I
)
+ (w + δjG)′ Σ̂

−1

j (w + δjG)

=

N∑
i=1

(
σ̄i +

(
ρ2σX i + S̄i

)
σ̄2
i +

(
ρX̄iσ̄i +

(
δj − δ̄i

)
Gi
)2)(

σ−1
i + Sij +

S̄2
i

ρ2σx

)
−N. (A.43)

The fourth term is
E1j

[
(E2j [F ]−Pr)′ Σ̂

−1

j

]
= w′Σ̂

−1

j . (A.44)

Aggregating through the four terms, the time-1 expected utility in Equation (A.40) is given by

U1j = rW0j

+
1

ρ

N∑
i=1

(
σ̄i +

(
ρ2σX i + S̄i

)
σ̄2
i +

(
ρX̄iσ̄i − δ̄iGi

)2)(
σ−1
i + Sij +

S̄2
i

ρ2σX i

)
− N

ρ

+
δj
ρ
G′Σ̂

−1

j w

− 1

2ρ

N∑
i=1

(
σ̄i +

(
ρ2σX i + S̄i

)
σ̄2
i +

(
ρX̄iσ̄i +

(
δj − δ̄i

)
Gi
)2)(

σ−1
i + Sij +

S̄2
i

ρ2σX i

)
+
N

2ρ

+
δj
ρ
w′Σ̂

−1

j G +
δ2j
ρ
G′Σ̂

−1

j G − cj (Sj)

= rW0j

+
1

ρ

N∑
i=1

(
σ̄i +

(
ρ2σX i + S̄i

)
σ̄2
i +

(
ρX̄iσ̄i − δ̄iGi

)2)(
σ−1
i + Sij +

S̄2
i

ρ2σX i

)
− N

ρ

+

N∑
i=1

2
δj
ρ
Gi
(
ρX̄iσ̄i − δ̄iGi

)(
σ−1
i + Sij +

S̄2
i

ρ2σX i

)

− 1

2ρ

N∑
i=1

(
σ̄i +

(
ρ2σX i + S̄i

)
σ̄2
i +

(
ρX̄iσ̄i +

(
δj − δ̄i

)
Gi
)2)(

σ−1
i + Sij +

S̄2
i

ρ2σX i

)
+
N

2ρ

+
δ2j
ρ

N∑
i=1

G2
i

(
σ−1
i + Sij +

S̄2
i

ρ2σX i

)
−

N∑
i=1

cij (Sij)

= constant +
N∑
i=1

ψijSij −
N∑
i=1

cij (Sij) , (A.45)

where

2ρψij = σ̄i +
(
ρ2σX i + S̄i

)
σ̄2
i + 2

(
ρX̄iσ̄i − δ̄iGi

)2
+ 4δjGi

(
ρX̄iσ̄i − δ̄iGi

)
−
(
ρX̄iσ̄i − δ̄iGi + δjGi

)2
+ 2δ2jG2

i

= σ̄i +
(
ρ2σX i + S̄i

)
σ̄2
i + 2

(
ρX̄iσ̄i

)2
+ 2

(
δ̄iGi

)2 − 4ρX̄iσ̄iδ̄iGi + 4δjGiρX̄iσ̄i − 4δj δ̄iG2
i −

(
ρX̄iσ̄i

)2
= −

(
δ̄iGi

)2 − (δjGi)2 + 2ρX̄iσ̄iδ̄iGi − 2ρX̄iσ̄iδjGi + 2δ̄iδjG2
i + 2δ2jG2

i

= σ̄i +
(
ρ2σX i + S̄i

)
σ̄2
i +

(
ρX̄iσ̄i

)2 − 2δj δ̄iG2
i +

(
δ̄iGi

)2
+ (δjGi)2 − 2ρX̄iσ̄iδ̄iGi + 2ρX̄iσ̄iδjGi

= σ̄i +
(
ρ2σX i + S̄i

)
σ̄2
i +

(
ρX̄iσ̄i

)2
+
(
δj − δ̄i

)2 G2
i + 2ρX̄iσ̄i

(
δj − δ̄i

)
Gi

= σ̄i +
(
ρ2σX i + S̄i

)
σ̄2
i +

(
ρX̄iσ̄i +

(
δj − δ̄i

)
Gi
)2
. (A.46)
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Accounting for the constraint Sij ≥ 0, the optimal signal precision is given by

Sij = max
[
0, s|c′ij (s) = ψij

]
. (A.47)

A.3 Total signal precision
We evaluate the average signal precision across all assets and agents when cij (s) = κs2 with κ > 0. We assume,
without loss of generality, that 1

N

∑N
i=1 gi = 0. Recall that ESG scores are ordinal in nature. We further assume that

σ̄i = σ̄, δ̄i = δ̄ =
∫
j
δjdj, X̄i = 1. The optimal signal precision is then given by

Sij =
σ̄ +

(
ρ2σX + S̄

)
σ̄2 +

(
ρσ̄ +

(
δj − δ̄

)
gi
)2

4κρ
. (A.48)

The average signal precision across all assets and agents is then equal to

ˆ̄S =
1

N

N∑
i=1

(∫
j

Sijdj

)

=
1

N

N∑
i=1

∫
j

σ̄ +
(
ρ2σX + S̄

)
σ̄2 +

(
ρσ̄ +

(
δj − δ̄

)
gi
)2

4κρ
dj

=
1

N

N∑
i=1

∫
j

σ̄ +
(
ρ2σX + S̄

)
σ̄2 + (ρσ̄)

2
+ 2ρσ̄

(
δj − δ̄

)
gi +

(
δj − δ̄

)2
g2i

4κρ
dj

=
σ̄ +

(
ρ2σX + S̄

)
σ̄2 + (ρσ̄)

2
+ σδσg

4κρ
, (A.49)

where σδ =
∫
j

(
δj − δ̄

)2
dj and σg = 1

N

∑N
i=1 g

2
i . The last term in the numerator of Equation (A.49) is the only

component that is explicitly originating from ESG considerations, leading to an incremental average signal precision
equal to ˆ̄SESG =

σδσg

4κρ .

A.4 Sensitivity of the optimal signal precision to ESG preferences
We differentiate ψij in Equation (A.46) with respect to

∣∣δj − δ̄
∣∣

∂ψij

∂
∣∣δj − δ̄

∣∣ = ∂

∂δj

(
ρX̄iσ̄i + sign

(
δj − δ̄i

)
·
∣∣δj − δ̄i

∣∣Gi)2
2ρ

=
ρX̄iσ̄i +

(
δj − δ̄i

)
Gi

ρ
· sign

(
δj − δ̄i

)
· Gi. (A.50)

When cij (s) = κs2 with κ > 0, the optimal signal precision is strictly positive and equal to Sij =
ψij

2κ . Then

∂Sij

∂
∣∣δj − δ̄

∣∣ = ρX̄iσ̄i +
(
δj − δ̄i

)
Gi

2κρ
· sign

(
δj − δ̄i

)
· Gi. (A.51)

Then,

∂Ŝj

∂
∣∣δj − δ̄

∣∣ = ∂

∂
∣∣δj − δ̄

∣∣
∑N
i=1 Sij
N

=
1

N

N∑
i=1

∂Sij

∂
∣∣δj − δ̄

∣∣ = 1

N

N∑
i=1

ρσ̄ +
(
δj − δ̄

)
gi

2κρ
· sign

(
δj − δ̄

)
· gi

= sign
(
δj − δ̄

)
·

(
1

N

N∑
i=1

σ̄

2κρ
· gi +

1

N

N∑
i=1

δj − δ̄

2κρ
g2i

)
=

σg
2κρ

∣∣δj − δ̄
∣∣ . (A.52)
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A.5 Sensitivity of the optimal aggregate signal precision to the ESG score
Taking the derivative of ψij in Equation (A.46) with respect to gi, we obtain

∂ψij
∂gi

=
σ̄2
i
∂S̄i

∂gi
+
(
1 + 2

(
ρ2σX i + S̄i

)
σ̄i + 2ρX̄i

(
ρσ̄iX̄i +

(
δj − δ̄i

)
gi
))

∂σ̄i

∂gi

2ρ

+

(
ρσ̄iX̄i +

(
δj − δ̄i

)
gi
) (
δj − δ̄i

)
ρ

. (A.53)

It then follows that

∂σ̄i
∂gi

=
∂

∂gi

(
σ−1
i + S̄i +

S̄2
i

ρ2σX i

)−1

= −
(
σ−1
i + S̄i +

S̄2
i

ρ2σX i

)−2(
1 +

2S̄i
ρ2σX i

)
∂S̄i
∂gi

. (A.54)

When cij (s) = κs2 for all assets and agents, the optimal signal precision is strictly positive and equal to Sij =
ψij

2κ .
Then,

∂Sij
∂gi

= −σ̄2
i

(
2
(
ρ2σX i + S̄i

)
σ̄i + 2ρX̄i

(
ρσ̄iX̄i +

(
δj − δ̄i

)
gi
)) (

1 + 2S̄i

ρ2σXi

)
+ 2S̄i

ρ2σXi

2ρκ

∂S̄i
∂gi

+
ρσ̄iX̄i +

(
δj − δ̄i

)
gi

ρκ

(
δj − δ̄i

)
. (A.55)

Integrating across agents allows one to obtain the sensitivity of the average signal precision with respect to the ESG
score

∂S̄i
∂gi

=

ρσ̄iX̄i

ρκ

(∫
j
δjdj − δ̄i

)
+ gi

ρκ

∫
j

(
δj − δ̄i

)2
dj

1 + σ̄2
i

(2(ρ2σXi+S̄i)σ̄i+2ρX̄i(ρσ̄iX̄i+(
∫
j
δjdj−δ̄i)gi))

(
1+

2S̄i
ρ2σXi

)
+

2S̄i
ρ2σXi

2ρκ

. (A.56)

Assuming δ̄i =
∫
j
δjdj, it follows that

∫
j

(
δj − δ̄i

)
dj = 0, while σδ =

∫
j

(
δj − δ̄i

)2
dj represents the variance of ESG

preferences across agents. The sensitivity of the average signal precision can then be expressed as

∂S̄i
∂gi

=
σδ

ρκ+
((
ρ2
(
σX i + X̄ 2

i

)
+ S̄i

) (
1 + 2S̄i

ρ2σXi

)
σ̄i +

S̄i

ρ2σXi

)
σ̄2
i

gi, (A.57)

where the denominator is a positive quantity. Multiplying both sides by sign (gi), the derivative can be rewritten as

∂S̄i
∂ |gi|

=
σδ

ρκ+
((
ρ2
(
σX i + X̄ 2

i

)
+ S̄i

) (
1 + 2S̄i

ρ2σXi

)
σ̄i +

S̄i

ρ2σXi

)
σ̄2
i

|gi| . (A.58)

A.6 Portfolio positions and ESG profile
We first derive the portfolio that optimally invests in the risk factors. Substituting Equations (A.14) and (A.16) into
Equation (A.18), the optimal portfolio is given by

Qj =
1

ρ
Σ̂

−1

j

(
Γ−1µ+ Σ̂j

(
Sjηj +Σ−1

p ηp
)
−Pr + δjG

)
=

1

ρ

(
Σ̂

−1

j Γ−1µ+ Sjηj +Σ−1
p ηp − Σ̂

−1

j Pr + δjΣ̂
−1

j G
)

=
1

ρ

(
Σ̂

−1

j

(
ρΣ̄X̄ −

(
I− Σ̄Σ−1

)
z + ρΣ̄

(
I+

1

ρ2
S̄Σ−1

X

)
X − δ̄G

)
+ Sj (z + εj) +

1

ρ2
S̄Σ−1

X S̄
(
z − ρS̄−1X

)
+ δjΣ̂

−1

j G
)
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=
1

ρ

(
ρΣ̂

−1

j Σ̄X̄ + Σ̂
−1

j

(
δjI− δ̄

)
G +

(
Sj − Σ̂

−1

j

(
I− Σ̄Σ−1

)
+

1

ρ2
S̄Σ−1

X S̄

)
z

+

(
ρΣ̂

−1

j Σ̄

(
I+

1

ρ2
S̄Σ−1

X

)
− 1

ρ
S̄Σ−1

X

)
X + Sjεj

)
. (A.59)

The unconditional expectation of the portfolio is

E [Qj ] =
1

ρ
Σ̂

−1

j

(
ρΣ̄X̄ +

(
δjI− δ̄

)
G
)
. (A.60)

From Equations (A.20) and (A.23), the cross-agent average portfolio is

Q̄ =

∫
j

Qjdj

=
1

ρ

(
Σ̄

−1
Γ−1µ+ S̄z +Σ−1

p ηp − Σ̄
−1Pr + Σ̄

−1
δ̄G
)

=
1

ρ

(
Σ̄

−1
(
ρΣ̄X̄ −

(
I− Σ̄Σ−1

)
z + ρΣ̄

(
I+

1

ρ2
S̄Σ−1

X

)
X
)
+ S̄z +

1

ρ2
S̄Σ−1

X S̄
(
z − ρS̄−1X

))
. (A.61)

Its unconditional expectation is E
[
Q̄
]
= X̄ . The difference between the risk-factor portfolio of investor j in Equation

(A.18) and the average portfolio is

Qj − Q̄ =
1

ρ

((
Σ̂

−1

j − Σ̄
−1
) (

Γ−1µ−Pr
)
+
(
Sj − S̄

)
z + Sjεj +

(
Σ̂

−1

j δj − Σ̄
−1

δ̄
)
G
)

=
1

ρ

((
Σ̂

−1

j − Σ̄
−1
)
(F −Pr) + Sjεj +

(
Σ̂

−1

j δj − Σ̄
−1

δ̄
)
G
)

=
1

ρ

((
Σ̂

−1

j − Σ̄
−1
)(

ρΣ̄X̄ − δ̄G +V
1
2u
)
+ Sjεj +

(
Σ̂

−1

j δj − Σ̄
−1

δ̄
)
G
)

=
1

ρ

((
Σ̂

−1

j − Σ̄
−1
)(

ρΣ̄X̄ +V
1
2u
)
+ Sjεj + Σ̂

−1

j

(
δjI− δ̄

)
G
)
, (A.62)

where the second equality follows from Σ̂
−1

j − Σ̄
−1

= Sj − S̄ and F = Γ−1µ+ z, while the third equality follows from
Equation (A.30). The unconditional expectation of the difference is

E
[
Qj − Q̄

]
=
(
Σ̂

−1

j Σ̄− I
)
X̄ +

1

ρ
Σ̂

−1

j

(
δjI− δ̄

)
G. (A.63)

We next analyze the optimal portfolio of risky assets. As qj = Γ−1′Qj , the expected portfolio positions are given by

E
[
qj
]
= Γ−1′Σ̂

−1

j Σ̄Γx̄+
1

ρ
Γ−1′Σ̂

−1

j

(
δjI− δ̄

)
G

= Γ−1′



...
σ̂−1
ij

σ̄−1
i

(x̄i + bix̄N ) +
δj−δ̄i
ρ σ̂ijgi

...
σ̂−1
Nj

σ̄−1
N

x̄N
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=



...
σ̂−1
ij

σ̄−1
i

(x̄i + bix̄N ) +
δj−δ̄i
ρ σ̂ijgi

...
σ̂−1
Nj

σ̄−1
N

x̄N −
∑N−1
k=1 bk

(
σ̂−1
kj

σ̄−1
k

(x̄k + bkx̄N ) +
δj−δ̄k
ρ σ̂kjgk

)


. (A.64)

It then follows that E [qij ] =
σ̂−1
ij

σ̄−1
i

(x̄i + bix̄N ) +
δj−δ̄i
ρ σ̂ijgi i = 1, . . . , N − 1

E [qNj ] =
σ̂−1
Nj

σ̄−1
N

x̄N −
∑N−1
k=1 bkE [qkj ] .

(A.65)

The expected portfolio positions in excess of the market counterparts are

E
[
qj − q̄

]
= Γ−1′

(
Σ̂

−1

j Σ̄− I
)
X̄ +

1

ρ
Σ̂

−1

j

(
δjI− δ̄

)
G

= Γ−1′



...(
σ̄i

σ̂ij
− 1
)
(x̄i + bix̄N ) +

δj−δ̄i
ρ σ̂−1

ij gi
...(

σ̄N

σ̂Nj
− 1
)
x̄N



=



...(
σ̄i

σ̂ij
− 1
)
(x̄i + bix̄N ) +

δj−δ̄i
ρ σ̂−1

ij gi
...(

σ̄N

σ̂Nj
− 1
)
x̄N −

∑N−1
i=1 bi

((
σ̄i

σ̂ij
− 1
)
(x̄i + bix̄N ) +

δj−δ̄i
ρ σ̂−1

ij gi

)

 . (A.66)

Then, E [qij − q̄i] =
(
Sij − S̄i

)
σ̄i (x̄i + bix̄N ) +

δj−δ̄i
ρ σ̂−1

ij gi, i = 1, . . . , N − 1

E [qNj − q̄N ] =
(
SNj − S̄N

)
σ̄N x̄N −

∑N−1
i=1 biE [qij − q̄i] .

(A.67)

The first equation in Proposition 2 follows.
The expected ESG score of the portfolio is given by

E [Gj ] = E
[(
qj − q̄

)′
g
]

= E
[(
Qj − Q̄

)′ G]
=

1

ρ
E
[((

Σ̂
−1

j − Σ̄
−1
)(

ρΣ̄X̄ +V
1
2u
)
+ Sjεj + Σ̂

−1

j

(
δjI− δ̄

)
G
)′

G
]

=
1

ρ

((
Σ̂

−1

j − Σ̄
−1
)
ρΣ̄X̄ + Σ̂

−1

j

(
δjI− δ̄

)
G
)′

G

=

N∑
i=1

X̄i

(
σ̂−1
ij

σ̄−1
i

− 1

)
Gi +

1

ρ
σ̂−1
ij

(
δj − δ̄i

)
G2
i

=

N∑
i=1

(x̄i + bix̄N )

(
σ̂−1
ij

σ̄−1
i

− 1

)
gi + ρ−1σ̂−1

ij

(
δj − δ̄i

)
g2i . (A.68)

To prove Equation (15), we assume that ggr = ḡ, gbr = −ḡ, ∆SgrP = ∆SbrI = ∆S, ∆SgrI = ∆SbrP = −∆S,
σ̄gr = σ̄br = σ̄, and X̄gr = X̄br = 1. Additionally, as the two groups of funds are of the same size, we assume that
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δ̄gr = δ̄br = δ̄ =
δp+δI

2 . Then: E [qgrP − qgrI ] =
δP−δI
ρ σ̄−1ḡ + 2∆Sσ̄,

E [qbrP − qbrI ] = − δP−δI
ρ σ̄−1ḡ − 2∆Sσ̄.

(A.69)

A.7 Expected utility loss from following a suboptimal strategy and infor-

mation acquisition policy
If agent j follows the strategy and the information decision that are optimal for agent k, its terminal wealth can be
expressed as

Wj|k = rW0j +
1

ρ
(E2j [F ]−Pr + δkG)′ Σ̂

−1

k (F −Pr)− cj (Sk) . (A.70)

Then, the time-1 expected utility is

U1j|k = rW0j + E1j

[
1

ρ
(E2j [F ]−Pr + δkG)′ Σ̂

−1

k (E2j [F ]−Pr)
]

− ρ

2
E1j

[
Var2j

[
1

ρ
(E2j [F ]−Pr + δkG)′ Σ̂

−1

k (F −Pr)
]]

+
δj
ρ

E1j

[
(E2j [F ]−Pr + δkG)′ Σ̂

−1

k

]
G − cj (Sk)

= rW0j +
1

ρ
E1j

[
(E2j [F ]−Pr)′ Σ̂

−1

k (E2j [F ]−Pr)
]

+
δk
ρ
G′Σ̂

−1

k E1j [E2j [F ]−Pr]

− 1

2ρ
E1j

[
Var2j

[
(E2j [F ]−Pr + δjG)′ Σ̂

−1

k (F −Pr)
]]

+
δj
ρ

E1j

[
(E2j [F ]−Pr)′ Σ̂

−1

k

]
G

+
δjδk
ρ

G′Σ̂
−1

k G − cj (Sk)

= rW0j

+
1

ρ

N∑
i=1

(
σ̄i +

(
ρ2σX i + S̄i

)
σ̄2
i +

(
ρX̄iσ̄i − δ̄iGi

)2)(
σ−1
i + Sik +

S̄2
i

ρ2σX i

)
− N

ρ

+
δk
ρ
G′Σ̂

−1

j w

− 1

2ρ

N∑
i=1

(
σ̄i +

(
ρ2σX i + S̄i

)
σ̄2
i +

(
ρX̄iσ̄i +

(
δk − δ̄i

)
Gi
)2)(

σ−1
i + Sik +

S̄2
i

ρ2σX i

)
+
N

2ρ

+
δj
ρ
w′Σ̂

−1

k G +
δjδk
ρ

G′Σ̂
−1

k G − cj (Sk)

= rW0j

+
1

ρ

N∑
i=1

(
σ̄i +

(
ρ2σX i + S̄i

)
σ̄2
i +

(
ρX̄iσ̄i − δ̄iGi

)2)(
σ−1
i + Sik +

S̄2
i

ρ2σX i

)
− N

ρ

+

N∑
i=1

δj + δk
ρ

Gi
(
ρX̄iσ̄i − δ̄iGi

)(
σ−1
i + Sik +

S̄2
i

ρ2σX i

)

− 1

2ρ

N∑
i=1

(
σ̄i +

(
ρ2σX i + S̄i

)
σ̄2
i +

(
ρX̄iσ̄i +

(
δk − δ̄i

)
Gi
)2)(

σ−1
i + Sik +

S̄2
i

ρ2σX i

)
+
N

2ρ
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+
δjδk
ρ

N∑
i=1

G2
i

(
σ−1
i + Sik +

S̄2
i

ρ2σX i

)
−

N∑
i=1

cij (Sik) . (A.71)

The expected utility loss from following the suboptimal policy is equal to

U1j − U1j|k =
1

ρ

N∑
i=1

(
σ̄i +

(
ρ2σX i + S̄i

)
σ̄2
i +

(
ρX̄iσ̄i − δ̄iGi

)2)
(Sij − Sik)

+

N∑
i=1

2
δj
ρ
Gi
(
ρX̄iσ̄i − δ̄iGi

)
σ̂−1
ij

−
N∑
i=1

δj + δk
ρ

Gi
(
ρX̄iσ̄i − δ̄iGi

)
σ̂−1
ik

+
1

2ρ

N∑
i=1

(
σ̄i +

(
ρ2σX i + S̄i

)
σ̄2
i +

(
ρX̄iσ̄i +

(
δk − δ̄i

)
Gi
)2)

σ̂−1
ik

− 1

2ρ

N∑
i=1

(
σ̄i +

(
ρ2σX i + S̄i

)
σ̄2
i +

(
ρX̄iσ̄i +

(
δj − δ̄i

)
Gi
)2)

σ̂−1
ij

+
δ2j
ρ

N∑
i=1

G2
i σ̂

−1
ij − δjδk

ρ

N∑
i=1

G2
i σ̂

−1
ik

−
N∑
i=1

(cij (Sij)− cij (Sik)) . (A.72)

A.8 Portfolio dispersion and tracking error
The average dispersion of the portfolio positions in individual assets (i = 1, ..., N − 1) per Proposition 4 is computed
as

E

[
N−1∑
i=1

(qij − q̄i)
2

]

= E

[
N−1∑
i=1

(
Qij − Q̄i

)2]

= E

[
N−1∑
i=1

(
1

ρ

(
Sij − S̄i

) (
ρσ̄iX̄i + V

1
2
ii ui

)
+

1

ρ
Sijεij +

1

ρ
σ̂−1
ij

(
δij − δ̄i

)
Gi
)2
]

= E

[
N−1∑
i=1

((
Sij − S̄i

)
σ̄iX̄i +

1

ρ

(
Sij − S̄i

)
V

1
2
ii ui +

1

ρ
Sijεij +

1

ρ
σ̂−1
ij ∆δijGi

)2
]

=

N−1∑
i=1

(((
Sij − S̄i

)
σ̄iX̄i +

1

ρ
σ̂−1
ij ∆δijGi

)2

+
1

ρ2
(
Sij − S̄i

)2
Vii +

1

ρ2
Sij

)

=

N−1∑
i=1

(((
Sij − S̄i

)
σ̄iX̄i +

1

ρ

(
σ−1
i + Sij +

S̄2
i

ρ2σX i

)
∆δijGi

)2

+
1

ρ2
(
Sij − S̄i

)2
Vii +

1

ρ2
Sij

)

=
1

ρ2

N−1∑
i=1

((
Sij
(
ρσ̄iX̄i +∆δijGi

)
− S̄iρσ̄iX̄i +

(
σ−1
i +

S̄2
i

ρ2σX i

)
∆δijGi

)2

+
(
Sij − S̄i

)2
Vii + Sij

)
. (A.73)

The return spread relative to the average portfolio is

(
qj − q̄

)′
(f − pr)
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=
(
Qj − Q̄

)′
(F −Pr)

=
1

ρ

((
Σ̂

−1

j − Σ̄
−1
)(

ρΣ̄X̄ +V
1
2u
)
+ Sjεj + Σ̂

−1

j

(
δjI− δ̄

)
G
)′ (

w +V
1
2u
)
. (A.74)

The tracking error of the optimal portfolio relative to the market portfolio is then

TEj = Var
[(
qj − q̄

)′
(f − pr)

]
= Var

[(
Qj − Q̄

)′
(F −Pr)

]
= Var

[
1

ρ

((
Σ̂

−1

j − Σ̄
−1
)(

ρΣ̄X̄ +V
1
2u
)
+ Sjεj + Σ̂

−1

j

(
δjI− δ̄

)
G
)′ (

w +V
1
2u
)]

=
1

ρ2
Var

[(
∆SjV

1
2u+ Sjεj

)′ (
ρΣ̄X̄ +V

1
2u
)
+
(
∆SjρΣ̄X̄ + Σ̂

−1

j

(
δjI− δ̄

)
G
)′

V
1
2u

]
=

1

ρ2
Var

[
ρε′jSjΣ̄X̄ + u′V

1
2∆SjV

1
2u+ ε′jSjV

1
2u+

(
2ρX̄ ′

Σ̄∆Sj + G′ (δjI− δ̄
)
Σ̂

−1

j

)
V

1
2u
]

=
1

ρ2

N∑
i=1

[(
ρσ̄iX̄i

)2
Sij + 2 (∆SijVii)

2
+ ViiSij +

(
2ρX̄iσ̄i∆Sij + Gi

(
δj − δ̄i

)
σ̂−1
ij

)2
Vii

]
. (A.75)

In the last equality, the second term follows from Var
[
u2i
]
= 2, while the third term follows from the independence of

εij and ui, which implies Var [εijui] = Var [εij ]Var [ui] = S−1
ij .

A.9 Expected net payoff and alpha
The expected excess net payoff is

EENPj = E
[(
qj − q̄

)′
(f − pr)

]
=

1

ρ
E
[((

Σ̂
−1

j − Σ̄
−1
)(

ρΣ̄X̄ +V
1
2u
)
+ Sjεj + Σ̂

−1

j

(
δjI− δ̄

)
G
)′ (

w +V
1
2u
)]

=
1

ρ

(
ρX̄ ′

Σ̄
(
Σ̂

−1

j − Σ̄
−1
)
w + G′ (δjI− δ̄

)′
Σ̂

−1

j w + E
[
u′V

1
2

(
Σ̂

−1

j − Σ̄
−1
)
V

1
2u
])

=
1

ρ

(
ρX̄ ′

Σ̄
(
Σ̂

−1

j − Σ̄
−1
) (
ρΣ̄X̄ − δ̄G

)
+ G′ (δjI− δ̄

)′
Σ̂

−1

j

(
ρΣ̄X̄ − δ̄G

)
+ tr

[(
Σ̂

−1

j − Σ̄
−1
)
V
])

= ρX̄ ′
Σ̄
(
Σ̂

−1

j − Σ̄
−1
)
Σ̄X̄ − X̄ ′

Σ̄
(
Σ̂

−1

j − Σ̄
−1
)
δ̄G

+
1

ρ
G′ (δjI− δ̄

)′
Σ̂

−1

j

(
ρΣ̄X̄ − δ̄G

)
+

1

ρ
tr
[(

Σ̂
−1

j − Σ̄
−1
)
V
]

=

N∑
i=1

ρσ̄iX̄ 2
i

(
σ̂−1
ij

σ̄−1
i

− 1

)
− X̄i

(
σ̂−1
ij

σ̄−1
i

− 1

)
δ̄iGi +

σ̂−1
ij

σ̄−1
i

X̄i
(
δj − δ̄i

)
Gi −

1

ρ
σ̂−1
ij

(
δj − δ̄i

)
δ̄iG2

i +
1

ρ

(
σ̂−1
ij − σ̄−1

i

)
Vii

=

N∑
i=1

ρσ̄iX̄ 2
i

(
σ̂−1
ij

σ̄−1
i

− 1

)
− X̄i

(
σ̂−1
ij

σ̄−1
i

− 1

)
δ̄iGi +

σ̂−1
ij

σ̄−1
i

X̄i∆δijGi −
1

ρ
σ̂−1
ij

(
δj − δ̄i

)
δ̄iG2

i +
1

ρ
∆SijVii

=

N∑
i=1

(
ρσ̄iX̄i − δ̄iGi

)
σ̄iX̄i∆Sij +

(
1 +

∆Sij

σ̄−1
i

)
X̄i∆δijGi −

1

ρ

(
σ̄−1
i +∆Sij

)
∆δij δ̄iG2

i +
1

ρ
∆SijVii

=

N∑
i=1

((
ρσ̄iX̄i − δ̄iGi

)
σ̄iX̄i +

1

ρ
Vii

)
∆Sij +

1

ρ

(
ρσ̄iX̄i − δ̄iGi

) (
σ̄−1
i +∆Sij

)
∆δijGi. (A.76)

To prove Equation (19), we assume that ggr = ḡ, gbr = −ḡ, ∆SgrP = ∆SbrI = ∆S, ∆SgrI = ∆SbrP = −∆S,
σ̄gr = σ̄br = σ̄, Vgr = Vbr = V , X̄gr = X̄br = 1, and δ̄gr = δ̄br = δ̄ =

δp+δI
2 . Then:
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EENPP − EENPI =

((
ρσ̄ − δ̄ḡ

)
σ̄ +

1

ρ
V

)
∆S +

1

ρ

(
ρσ̄ − δ̄ḡ

) (
σ̄−1 +∆S

) (
δP − δ̄

)
ḡ

−
((
ρσ̄ + δ̄ḡ

)
σ̄ +

1

ρ
V

)
∆S − 1

ρ

(
ρσ̄ + δ̄ḡ

) (
σ̄−1 −∆S

) (
δP − δ̄

)
ḡ

+

((
ρσ̄ − δ̄ḡ

)
σ̄ +

1

ρ
V

)
∆S − 1

ρ

(
ρσ̄ − δ̄ḡ

) (
σ̄−1 −∆S

) (
δI − δ̄

)
ḡ

−
((
ρσ̄ + δ̄ḡ

)
σ̄ +

1

ρ
V

)
∆S +

1

ρ

(
ρσ̄ + δ̄ḡ

) (
σ̄−1 +∆S

) (
δI − δ̄

)
ḡ

= −2
δ̄

ρ
σ̄−1 (δP − δI) ḡ

2 − 4δ̄ḡσ̄∆S. (A.77)

We then evaluate the expected net payoff of agent j ’s portfolio, ENPj = E
[
q′
j (f − pr)

]
. As F −Pr = w+V

1
2u,

where w = ρΣ̄X̄ − δ̄G and V
1
2u = Σ̄Σ−1z + ρΣ̄

(
I+ 1

ρ2 S̄Σ
−1
X

)
X , and given Qj in Equation (A.59), we can write

ENPj = E
[
q′
j (f − pr)

]
= E

[
Q′
j (F −Pr)

]

= E


1
ρ

 ρΣ̂
−1

j Σ̄X̄ + Σ̂
−1

j

(
δjI− δ̄

)
G +

(
Sj − Σ̂

−1

j

(
I− Σ̄Σ−1

)
+ 1

ρ2 S̄Σ
−1
X S̄

)
z

+
(
ρΣ̂

−1

j Σ̄
(
I+ 1

ρ2 S̄Σ
−1
X

)
− 1

ρ S̄Σ
−1
X

)
X + Sjεj

′

(
ρΣ̄X̄ − δ̄G + Σ̄Σ−1z + ρΣ̄

(
I+ 1

ρ2 S̄Σ
−1
X

)
X
)



=
1

ρ

N∑
i=1

E


 ρσ̂−1

ij σ̄iX̄i + σ̂−1
ij

(
δj − δ̄i

)
Gi +

(
Sij − σ̂−1

ij

(
1− σ̄iσ

−1
i

)
+

S̄2
i

ρ2σXi

)
zi

+
(
ρσ̂−1

ij σ̄i

(
1 + S̄i

ρ2σXi

)
− S̄i

ρσXi

)
Xi + Sijεij


·
(
ρσ̄iX̄i − δ̄iGi + σ̄iσ

−1
i zi + ρσ̄i

(
1 + S̄i

ρ2σXi

)
Xi
)


=

1

ρ

N∑
i=1

 (ρσ̂−1
ij σ̄iX̄i + σ̂−1

ij

(
δj − δ̄i

)
Gi
) (
ρσ̄iX̄i − δ̄iGi

)
+
(
Sij − σ̂−1

ij

(
1− σ̄iσ

−1
i

)
+

S̄2
i

ρ2σXi

)
σ̄i

+
(
ρσ̂−1

ij σ̄i

(
1 + S̄i

ρ2σXi

)
− S̄i

ρσXi

)
ρσ̄i

(
1 + S̄i

ρ2σXi

)
σX i

 . (A.78)

Our aim is to study the alpha of agent j ’s portfolio, expressing it as

αj = E
[
q′
j (f − pr)

]
−

Cov
[
q′
j (f − pr) , q̄′ (f − pr)

]
Var [q̄′ (f − pr)]︸ ︷︷ ︸

βj

E [q̄′ (f − pr)] , (A.79)

where E
[
q′
j (f − pr)

]
is the expected net payoff of portfolio j given in Equation (A.78), while the quantities E [q̄′ (f − pr)],

Var [q̄′ (f − pr)], and Cov
[
q′
j (f − pr) , q̄′ (f − pr)

]
are given by:

E [q̄′ (f − pr)] = E
[
Q̄′

(F −Pr)
]

= E
[(
X̄ +X

)′(
ρΣ̄X̄ − δ̄G + Σ̄Σ−1z + ρΣ̄

(
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1

ρ2
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X

)
X
)]

=

N∑
i=1

E
[(
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)(
ρσ̄iX̄i − δ̄iGi + σ̄iσ

−1
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(
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S̄i
ρ2σX i

)
Xi
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=
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(
X̄i
(
ρσ̄iX̄i − δ̄iGi

)
+ ρσ̄i

(
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S̄i
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)
σX i

)
, (A.80)
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Var [q̄′ (f − pr)] = Var
[
Q̄′

(F −Pr)
]

= Var
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and

Cov
[
q′
j (f − pr) , q̄′ (f − pr)

]
= Cov

[
Q′
j (F −Pr) , Q̄′

(F −Pr)
]

= Cov
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A.10 Price informativeness
Following Kacperczyk et al. (2020), we can evaluate the price informativeness for risk factor i as follows:
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The asset-level price informativeness is

PIi =
Cov [fi, pi]
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=

Cov [Fi + biFN ,Pir + biPNr]
Std [Pir + biPNr]

=
Cov

[
zi,
(
1− σ̄i

σi

)
zi − ρσ̄i

(
1 + S̄i

ρ2σXi

)
Xi
]
+ b2iCov

[
zN ,

(
1− σ̄N

σN

)
zN − ρσ̄N

(
1 + S̄N

ρ2σXN

)
XN
]

Std
[(

1− σ̄i

σi

)
zi − ρσ̄i

(
1 + S̄i

ρ2σXi

)
Xi + bi

((
1− σ̄N

σN

)
zN − ρσ̄N

(
1 + S̄N

ρ2σXN

)
XN
)]

=
σi − σ̄i + b2i (σN − σ̄N )√(

1− σ̄i

σi

)2
σi + ρ2σ̄2

i

(
1 + S̄i

ρ2σXi

)2
σX i + b2i

((
1− σ̄N

σN

)2
σN + ρ2σ̄2

N

(
1 + S̄N

ρ2σXN

)2
σXN

)

A - 18



=
σi − σ̄i + b2i (σN − σ̄N )√

σ̄2
i

(
1 + S̄i

ρ2σXi

)2 (
S̄2
i σi + ρ2σX i

)
+ b2i σ̄

2
N

(
1 + S̄N

ρ2σXN

)2 (
S̄2
NσN + ρ2σXN

)

=

1
σ−1
i

− 1

σ−1
i +S̄i+

S̄2
i

ρ2σXi

+ b2i

(
1
σ−1
N

− 1

σ−1
N +S̄N+

S̄2
N

ρ2σXN

)
√
σ̄2
i

(
1 + S̄i

ρ2σXi

)2 (
S̄2
i σi + ρ2σX i

)
+ b2i σ̄

2
N

(
1 + S̄N

ρ2σXN

)2 (
S̄2
NσN + ρ2σXN

)
=

σiσ̄iS̄i

(
1 + S̄i

ρ2σXi

)
+ b2iσN σ̄N S̄N

(
1 + S̄N

ρ2σXN

)
√(

σi + ρ2 σXi

S̄2
i

)
σ̄2
i S̄

2
i

(
1 + S̄i

ρ2σXi

)2
+ b2i

(
σN + ρ2 σXN

S̄2
N

)
σ̄2
N S̄

2
N

(
1 + S̄N

ρ2σXN

)2
=

σiζi + b2iσNζN√(
σi + ρ2 σXi

S̄2
i

)
ζ2i + b2i

(
σN + ρ2 σXN

S̄2
N

)
ζ2N

. (A.84)

B Supplementary material

A - 19



Table B.1: Variables Definitions

Variables Definitions

A. ESG Rating Measures

Stock ESG We collect ESG rating data from three data vendors: MSCI KLD, MSCI IVA, and Sustainalytics. For each
rater-month, we sort all stocks covered by this rater according to the original rating scale and calculate the
percentile rank (normalized between −0.5 and 0.5) for each stock. We compute the firm-level ESG rating as
the average rank across all raters.

Fund ESG The investment value-weighted average of the stock ESG rating in a fund’s most recently reported holding
portfolio. The stock ESG rating is defined as in the Stock ESG above.

Stock ESGDev The stock-level departure from green neutrality of stock i in a given month t is computed as follows:
ESGDevi,t = |Stock ESGi,t|, where Stock ESGi,t is the ESG rating of stock i in month t, which is de-
fined as in the Stock ESG above.

Fund ESGDev The fund-level departure from green neutrality of fund j in a given month t is computed as follows:
ESGDevj,t = |Fund ESGj,t|, where Fund ESGj,t is the ESG rating of fund j in month t, which is de-
fined as in the Fund ESG above.

Stock ESGDisp The heterogeneity in the ESG preferences of stock i in a given month t is the (investment value-weighted)
standard deviation of the fund ESG rating of all funds that hold stock i in month t.

B. Other Fund Characteristics

HHIBMK The portfolio dispersion of fund j in a given month t is computed as follows: HHIBMKj,t =∑Nj,t

i=1

(
wi,j,t − wb

i,j,t

)2
, where wi,j,t is the investment weight of stock i by fund j in month t, wb

i,j,t is
the investment weight of stock i in fund j’s benchmark portfolio at the same time, and Nj,t is the total
number of stocks in the universe of fund j’s holding portfolio and benchmark portfolio at the same time.
We define the benchmark of the mutual funds based on the Primary Prospectus Benchmark from the Morn-
ingstar mutual fund database.

TEBMK The tracking error of fund j in a given month t, TEBMKj,t, is obtained from the following daily regression
with a 6-month estimation period (month t−5 to month t): Rj,d = α+βRb

j,d+ ϵj,d, where Rj,d is the excess
return of fund j on day d, and Rb

j,d is the excess return on fund j’s benchmark index at the same time.
TEBMKj,t is the variance of ϵj,d, following Cremers and Petajisto (2009). We define the benchmark of the
mutual funds based on the Primary Prospectus Benchmark from the Morningstar mutual fund database.

HHIMKT The portfolio dispersion of fund j in a given month t is computed as follows: HHIMKTj,t =∑Nj,t

i=1 (wi,j,t − wi,m,t)
2, where wi,j,t is the investment weight of stock i by fund j in month t, wi,m,t is

the investment weight of stock i in the market portfolio at the same time, and Nj,t is the total number
of stocks in the universe of fund j’s holding portfolio and the market portfolio at the same time, following
Kacperczyk et al. (2016).

TEMKT The tracking error of fund j in a given month t, TEMKTj,t, is obtained from the following daily regression
with a 6-month estimation period (month t − 5 to month t): Rj,d = α + βRm,d + ϵj,d, where Rj,d is the
excess return of fund j on day d, and Rm,d is the excess return on the market portfolio at the same time.
TEMKTj,t is the variance of ϵj,d.

Fund Return The monthly net-of-fee return reported by the CRSP survivorship bias-free mutual fund database. When
a fund has multiple share classes, its total return is computed as the share class total net assets (TNA)-
weighted return of all share classes, where the TNA values are lagged by one month.

Fund Flow The flow of fund j in a given month t is computed as follows: Flowj,t =
TNAj,t−TNAj,t−1×(1+rj,t)

TNAj,t−1
, where

TNAj,t is the TNA of fund j in month t, and rj,t is the fund return at the same time.

Log(Fund TNA) The logarithm of the total net assets, as reported in the CRSP survivorship bias-free mutual fund database.

Expense Ratio The annualized expense ratio, as reported in the CRSP survivorship bias-free mutual fund database.

Fund Turnover The annualized turnover ratio, as reported in the CRSP survivorship bias-free mutual fund database.

Log(Fund Age) The logarithm of the number of operational months since inception.

Flow Volatility The standard deviation of the monthly fund flows in the previous 12 months.
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Table B.1 (continued)

Variables Definitions

C. Other Stock Characteristics

Green IO The number of shares held by green funds divided by the number of shares outstanding. Green funds refer
to funds with Fund ESG in the top quintile across all funds.

Brown IO The number of shares held by brown funds divided by the number of shares outstanding. Brown funds refer
to funds with Fund ESG in the bottom quintile across all funds.

IVOL The standard deviation of the residuals estimated from the Fama-French-Carhart four-factor model (Fama
and French, 1993; Carhart, 1997) by using the daily returns in a month. More specifically, we regress the
daily stock excess return on the market, size, book-to-market, and momentum factor returns and obtain the
residuals.

RETVOL The standard deviation of the daily stock returns in a month.

Log(Size) The logarithm of the stock market capitalization, which is computed as the number of common shares
outstanding times the share price as reported in CRSP.

Log(BM) The logarithm of the book-to-market ratio, which is defined as the book value of equity divided by market
capitalization at fiscal year-end. The book value of equity is computed as the stockholders’ equity (COM-
PUSTAT annual item SEQ), plus deferred taxes and investment tax credit (item TXDITC), minus the book
value of the preferred stock. Depending on availability, we use the redemption value (item PSTKRV), liq-
uidation value (item PSTKL), or carrying value (item PSTK) to estimate the book value of the preferred
stock, following Fama and French (1993) and Davis et al. (2000).

ROE The return on equity of stock i in a given quarter q is computed as follows: ROEi,q =
INCOMEi,q/EQUITYi,q−1, where INCOMEi,q is the income before extraordinary items (COMPUSTAT
quarterly item IBQ) of stock i in quarter q, and EQUITYi,q−1 is the shareholders’ equity. Depending on
availability, we use stockholders’ equity (item SEQQ), common equity (item CEQQ) plus redemption value
(item PSTKRQ), common equity (item CEQQ) plus the carrying value of the preferred stock (item PSTKQ),
or total assets (item ATQ) minus total liabilities (item LTQ) in this order as shareholders’ equity, following
Hou et al. (2015).

I/A The investment-to-assets of stock i in a given quarter q is computed as follows: I/Ai,q = ATi,q/ATi,q−4 − 1,
where ATi,q is the total assets (COMPUSTAT quarterly item ATQ) of stock i in quarter q.

1M Return The monthly stock return.

12M Return The past return in a given month t is computed as the cumulative 11-month return from month t − 11 to
month t− 1, following Jegadeesh and Titman (1993).

IO The number of shares held by institutions divided by the number of shares outstanding.

Log(Illiquidity) The logarithm of stock illiquidity. The illiquidity of stock i in a given month t is computed as follows:
ILLIQi,t =

(∑
d∈t

∣∣Ri,d,t

∣∣ /VOLDi,d,t

)
/Di,t × 106, where Ri,d,t refers to the return of stock i on day d of

month t, VOLDi,d,t refers to the dollar trading volume at the same time, and Di,t is the number of trading
days for stock i in month t, following Amihud (2002).

Log(Analyst Coverage) The logarithm of the number of analysts following a firm as reported in I/B/E/S.

Analyst Dispersion The standard deviation of analysts’ earnings (earnings per share, EPS) forecasts divided by the absolute
value of the average earnings forecast as reported in I/B/E/S.

Log(M/A) The logarithm of the market capitalization-to-total assets ratio, where market capitalization is defined as in
Log(Size), and total assets is reported in COMPUSTAT (annual item AT).

E/A The earnings before interest and taxes (COMPUSTAT annual item EBIT) divided by the total assets (item
AT).

Log(Asset) The logarithm of the total assets (COMPUSTAT annual item AT).

Leverage The total liabilities (COMPUSTAT annual item LT) divided by the total assets (item AT).

Tangibility The net property, plant, and equipment (COMPUSTAT annual item PPENT) divided by the total assets
(item AT).

Log(Sales) The logarithm of the sales (COMPUSTAT annual item SALE).

Cash The cash holdings (COMPUSTAT annual item CH) divided by the total assets (item AT).
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Table B.2: Performance of Portfolios Sorted by Mutual Fund Ownership and ESG Rating

In Panels A1 and A2, at the end of month t , stocks are first sorted into quintiles according to their green fund ownership. Within each green
fund ownership group, stocks are further sorted into quintiles according to their ESG ratings to generate 25 (5×5) portfolios. The low-
(high)-ESG-rating and green-fund-ownership portfolios comprise the bottom (top) quintile of stocks based on the ESG rating and green
fund ownership, respectively. For each of the 25 portfolios, we compute the value-weighted return in month t+1 and rebalance the portfolios
at the end of month t+1. Panel A reports the monthly Fama-French six-factor-adjusted returns (FF6) and characteristic-adjusted returns
per Daniel et al. (1997) (DGTW) for each of the 25 portfolios and for the investment strategy of going long (short) in the high- (low)-ESG-
rating stocks (“HML-R”) and the investment strategy of going long (short) in the high- (low)-green-fund-ownership stocks (“HML-G”). The
column “All” reports similar statistics for the portfolios sorted only by the ESG ratings, and the row “All” reports similar statistics for the
portfolios sorted only by green fund ownership. Panels A1 and A2 report the subperiod results for January 2001–October 2012 and for
November 2012–December 2019, respectively. Panels B1 and B2 report similar statistics when we replace green fund ownership with brown
fund ownership. We identify green (brown) funds as those with a fund-level ESG rating in the top (bottom) quintile across all funds at
the end of each month. The Newey-West adjusted t-statistics are shown in parentheses. Online Appendix Table B.1 provides a detailed
definition for each variable. Numbers with *, **, and *** are significant at the 10%, 5%, and 1% levels, respectively.

FF6-adjusted Return DGTW-adjusted Return

Ownership Stock ESG Stock ESG

Low 2 3 4 High HML-R All Low 2 3 4 High HML-R All

Panel A1: Portfolios Sorted by Green Fund Ownership and ESG Rating (Jan 2001–Oct 2012)

Low -0.026 -0.227 -0.484* -0.270 -0.323* -0.298 -0.207 0.110 0.262 -0.125 0.012 -0.230 -0.340 0.011
(-0.11) (-0.78) (-1.74) (-1.60) (-1.81) (-0.95) (-1.59) (0.50) (1.40) (-0.37) (0.06) (-1.07) (-1.30) (0.07)

2 -0.146 0.195 -0.183 -0.281 0.190 0.336 -0.107 0.071 0.264 0.064 -0.047 0.338 0.268 -0.008
(-0.64) (0.42) (-0.73) (-1.02) (0.93) (0.97) (-0.66) (0.36) (0.98) (0.16) (-0.17) (1.44) (0.87) (-0.05)

3 -0.177 -0.149 -0.197 -0.380** -0.194 -0.017 -0.204 -0.045 -0.086 -0.063 -0.309* -0.025 0.020 -0.094
(-0.76) (-0.77) (-0.91) (-2.10) (-1.01) (-0.06) (-1.45) (-0.30) (-0.46) (-0.39) (-1.92) (-0.11) (0.08) (-0.85)

4 0.193 0.314 0.222 -0.071 0.027 -0.166 0.163* 0.061 0.022 -0.119 -0.113 -0.071 -0.132 -0.004
(1.18) (1.21) (1.10) (-0.31) (0.14) (-0.59) (1.78) (0.35) (0.11) (-0.83) (-0.60) (-0.45) (-0.66) (-0.03)

High 0.307 -0.076 0.308* 0.098 -0.253 -0.560** -0.039 0.245 -0.071 0.053 -0.128 -0.266* -0.511** -0.130
(1.59) (-0.33) (1.93) (0.49) (-1.55) (-2.31) (-0.37) (1.29) (-0.58) (0.41) (-0.80) (-1.66) (-2.12) (-1.35)

HML-G 0.332 0.151 0.791** 0.369 0.070 -0.263 0.168 0.134 -0.332* 0.177 -0.140 -0.037 -0.171 -0.140
(1.16) (0.42) (2.46) (1.50) (0.28) (-0.72) (0.99) (0.65) (-1.78) (0.49) (-0.64) (-0.15) (-0.59) (-0.96)

All -0.001 -0.007 0.022 -0.191 0.024 0.025 0.092 -0.005 -0.090 -0.131 -0.017 -0.109
(-0.01) (-0.05) (0.24) (-1.41) (0.27) (0.13) (0.70) (-0.05) (-1.01) (-1.39) (-0.18) (-0.79)

Panel A2: Portfolios Sorted by Green Fund Ownership and ESG Rating (Nov 2012–Dec 2019)

Low -0.396* -0.237 -0.071 -0.165 -0.291 0.105 -0.225 0.236 0.058 0.200 0.004 0.057 -0.179 0.102
(-1.67) (-1.27) (-0.40) (-0.90) (-1.62) (0.40) (-1.63) (1.39) (0.34) (1.31) (0.02) (0.30) (-0.78) (0.97)

2 -0.506** -0.128 -0.045 -0.061 -0.310** 0.196 -0.206** -0.170 -0.068 0.012 0.125 0.056 0.226 0.007
(-2.20) (-0.63) (-0.25) (-0.38) (-2.06) (0.79) (-2.01) (-0.74) (-0.35) (0.06) (0.74) (0.38) (0.89) (0.07)

3 -0.134 0.266 -0.100 -0.364*** -0.080 0.053 -0.069 -0.101 0.242 0.031 -0.039 0.091 0.192 0.044
(-0.45) (1.46) (-0.61) (-2.91) (-0.62) (0.17) (-0.81) (-0.45) (1.20) (0.21) (-0.33) (0.60) (0.66) (0.59)

4 -0.097 0.646*** 0.070 -0.257 -0.145 -0.048 -0.025 0.201 0.631*** -0.041 -0.089 0.142 -0.059 0.145
(-0.36) (3.73) (0.44) (-1.32) (-0.69) (-0.12) (-0.27) (0.99) (3.24) (-0.26) (-0.48) (0.88) (-0.23) (1.27)

High -0.240 0.008 -0.031 0.031 0.188* 0.427* 0.038 -0.026 0.037 0.079 0.126 0.257*** 0.283* 0.127***
(-1.57) (0.08) (-0.35) (0.35) (1.77) (1.87) (1.54) (-0.27) (0.33) (0.96) (1.57) (3.21) (1.91) (3.14)

HML-G 0.156 0.245 0.039 0.196 0.479** 0.323 0.263* -0.262 -0.021 -0.122 0.122 0.200 0.462** 0.025
(0.58) (1.03) (0.23) (1.01) (2.61) (1.07) (1.90) (-1.50) (-0.10) (-0.86) (0.66) (1.20) (2.11) (0.26)

All -0.142 0.098 -0.078 -0.044 0.060 0.203 0.071 0.240* 0.028 0.027 0.178*** 0.107
(-1.03) (0.68) (-0.99) (-0.57) (1.33) (1.28) (0.57) (1.77) (0.34) (0.38) (3.44) (0.70)

Panel B1: Portfolios Sorted by Brown Fund Ownership and ESG Rating (Jan 2001–Oct 2012)

Low 0.387* -0.195 0.249 0.357 -0.167 -0.555** 0.071 0.336 -0.104 0.043 0.167 -0.178 -0.515* 0.025
(1.66) (-0.95) (0.80) (1.26) (-0.74) (-2.00) (0.49) (1.50) (-0.62) (0.20) (0.76) (-0.96) (-1.83) (0.21)

2 0.143 -0.193 0.010 -0.040 -0.028 -0.170 0.032 0.029 -0.133 -0.158 -0.248 -0.134 -0.162 -0.110
(0.66) (-0.79) (0.06) (-0.16) (-0.18) (-0.67) (0.27) (0.16) (-0.80) (-1.04) (-1.10) (-1.24) (-0.78) (-1.31)

3 0.018 0.183 -0.206 -0.305 -0.005 -0.023 -0.007 0.113 0.095 -0.207* -0.168 0.024 -0.089 -0.002
(0.08) (0.80) (-1.47) (-1.24) (-0.03) (-0.08) (-0.06) (0.61) (0.55) (-1.66) (-0.84) (0.17) (-0.41) (-0.03)

4 0.089 0.015 -0.200 -0.142 -0.299* -0.388* -0.047 0.143 0.125 -0.114 0.016 -0.014 -0.157 0.066
(0.40) (0.07) (-0.99) (-0.61) (-1.87) (-1.68) (-0.32) (0.92) (0.84) (-0.64) (0.10) (-0.07) (-0.66) (0.62)

High -0.229 -0.266 -0.373 -0.077 -0.559** -0.330 -0.310* 0.118 -0.117 -0.134 0.025 -0.316* -0.434** -0.061
(-0.96) (-1.34) (-1.49) (-0.37) (-2.54) (-1.36) (-1.72) (0.62) (-0.62) (-0.67) (0.15) (-1.66) (-2.06) (-0.43)

HML-B -0.616* -0.071 -0.622 -0.434 -0.392 0.224 -0.382 -0.219 -0.013 -0.177 -0.143 -0.138 0.081 -0.086
(-1.66) (-0.23) (-1.41) (-1.10) (-1.16) (0.67) (-1.34) (-0.84) (-0.05) (-0.53) (-0.59) (-0.55) (0.25) (-0.47)

All -0.001 -0.007 0.022 -0.191 0.024 0.025 0.092 -0.005 -0.090 -0.131 -0.017 -0.109
(-0.01) (-0.05) (0.24) (-1.41) (0.27) (0.13) (0.70) (-0.05) (-1.01) (-1.39) (-0.18) (-0.79)

Panel B2: Portfolios Sorted by Brown Fund Ownership and ESG Rating (Nov 2012–Dec 2019)

Low -0.117 0.014 -0.085 -0.088 0.184* 0.301 -0.005 0.163 0.022 -0.019 0.086 0.258*** 0.095 0.109***
(-0.65) (0.11) (-0.79) (-0.78) (1.71) (1.39) (-0.17) (0.97) (0.21) (-0.22) (1.14) (3.19) (0.50) (3.05)

2 0.003 0.021 -0.017 0.210* -0.054 -0.057 0.037 0.183 0.162 0.145 0.282** 0.097 -0.086 0.164*
(0.01) (0.11) (-0.11) (1.94) (-0.48) (-0.21) (0.52) (0.93) (0.90) (0.86) (2.39) (0.91) (-0.40) (1.93)

3 -0.204 -0.160 0.087 -0.082 -0.150 0.054 -0.074 -0.054 -0.137 0.184 0.074 0.057 0.110 0.043
(-1.18) (-1.14) (0.45) (-0.56) (-1.12) (0.26) (-0.91) (-0.38) (-1.08) (1.29) (0.51) (0.39) (0.52) (0.59)

4 -0.160 -0.009 0.163 0.049 -0.077 0.083 -0.006 -0.039 0.194 0.129 0.278** 0.294** 0.333* 0.180**
(-1.20) (-0.08) (1.12) (0.35) (-0.62) (0.50) (-0.10) (-0.26) (1.60) (1.01) (2.17) (2.08) (1.96) (2.19)

High -0.232 0.207 -0.056 -0.136 0.060 0.292 -0.031 -0.005 0.145 0.132 0.009 0.190 0.195 0.097
(-1.63) (1.41) (-0.49) (-1.26) (0.59) (1.64) (-0.45) (-0.03) (0.96) (1.00) (0.06) (1.54) (1.12) (0.89)

HML-B -0.115 0.193 0.028 -0.048 -0.124 -0.009 -0.027 -0.168 0.123 0.150 -0.077 -0.068 0.100 -0.011
(-0.57) (0.85) (0.17) (-0.27) (-0.79) (-0.04) (-0.32) (-0.80) (0.70) (1.14) (-0.48) (-0.51) (0.44) (-0.11)

All -0.142 0.098 -0.078 -0.044 0.060 0.203 0.071 0.240* 0.028 0.027 0.178*** 0.107
(-1.03) (0.68) (-0.99) (-0.57) (1.33) (1.28) (0.57) (1.77) (0.34) (0.38) (3.44) (0.70)
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Table B.3: Implied Cost of Capital of Portfolios Sorted by Mutual Fund Ownership and ESG Rating

In Panels A1 and A2, at the end of month t , stocks are first sorted into quintiles according to their green fund ownership. Within each green
fund ownership group, stocks are further sorted into quintiles according to their ESG ratings to generate 25 (5×5) portfolios. The low-
(high)-ESG-rating and green-fund-ownership portfolios comprise the bottom (top) quintile of stocks based on the ESG rating and green
fund ownership, respectively. For each of the 25 portfolios, we compute the value-weighted implied cost of capital (ICC) in month t+1 and
rebalance the portfolios at the end of month t+1. We compute the ICC for each stock-month following Hou et al. (2012) and Pástor et al.
(2022). Panel A reports the time-series averages of the monthly Fama-French six-factor-adjusted ICCs (FF6) and characteristic-adjusted
ICCs per Daniel et al. (1997) (DGTW) for each of the 25 portfolios and for the investment strategy of going long (short) in the high- (low)-
ESG-rating stocks (“HML-R”) and the investment strategy of going long (short) in the high- (low)-green-fund-ownership stocks (“HML-G”).
The column “All” reports similar statistics for portfolios sorted only by the ESG ratings, and the row “All” reports similar statistics for
portfolios sorted only by green fund ownership. Panels A1 and A2 report the subperiod results for January 2001–October 2012 and for
November 2012–December 2019, respectively. Panels B1 and B2 report similar statistics when we replace green fund ownership with brown
fund ownership. We identify green (brown) funds as those with a fund-level ESG rating in the top (bottom) quintile across all funds at
the end of each month. The Newey-West adjusted t-statistics are shown in parentheses. Online Appendix Table B.1 provides a detailed
definition for each variable. Numbers with *, **, and *** are significant at the 10%, 5%, and 1% levels, respectively.

FF6-adjusted ICC DGTW-adjusted ICC

Ownership Stock ESG Stock ESG

Low 2 3 4 High HML-R All Low 2 3 4 High HML-R All

Panel A1: Portfolios Sorted by Green Fund Ownership and ESG Rating (Jan 2001–Oct 2012)

Low 0.594*** 0.451*** 0.361*** 0.531*** 0.566*** -0.028** 0.567*** 0.058*** 0.012 0.021** 0.031*** 0.021** -0.036*** 0.031***
(18.74) (9.23) (6.25) (14.08) (18.51) (-2.40) (18.54) (6.40) (1.55) (2.50) (2.91) (2.38) (-3.70) (4.33)

2 0.558*** 0.494*** 0.442*** 0.458*** 0.567*** 0.009 0.542*** 0.034*** 0.008 0.018** 0.010 0.030*** -0.004 0.018***
(17.62) (11.16) (7.74) (10.74) (19.89) (0.49) (18.08) (3.36) (0.95) (2.43) (1.47) (3.88) (-0.32) (3.81)

3 0.552*** 0.510*** 0.480*** 0.449*** 0.572*** 0.021 0.540*** 0.036*** 0.029** 0.004 -0.000 0.051*** 0.015 0.024***
(16.14) (12.84) (10.02) (11.15) (19.99) (1.20) (17.36) (3.50) (2.57) (0.61) (-0.01) (4.09) (1.02) (3.65)

4 0.528*** 0.479*** 0.525*** 0.498*** 0.508*** -0.020 0.500*** 0.031*** 0.003 0.022*** -0.006 -0.007 -0.038*** 0.004
(14.21) (16.24) (16.18) (13.79) (15.46) (-1.13) (16.17) (3.64) (0.29) (2.95) (-0.70) (-0.66) (-2.82) (0.58)

High 0.545*** 0.471*** 0.492*** 0.462*** 0.396*** -0.148*** 0.457*** 0.035*** 0.022*** 0.001 -0.023*** -0.070*** -0.105*** -0.025***
(16.35) (10.38) (14.67) (14.58) (14.14) (-11.45) (14.70) (3.56) (4.26) (0.09) (-4.31) (-11.74) (-9.77) (-6.41)

HML-G -0.050** 0.020 0.130** -0.069** -0.170*** -0.120*** -0.110*** -0.023* 0.010 -0.020* -0.053*** -0.091*** -0.069*** -0.056***
(-2.61) (0.37) (2.35) (-2.14) (-12.55) (-7.22) (-7.49) (-1.75) (1.02) (-1.86) (-4.30) (-10.19) (-4.69) (-6.50)

All 0.527*** 0.452*** 0.449*** 0.427*** 0.425*** -0.103*** 0.025*** 0.011 0.014*** -0.015*** -0.049*** -0.074***
(15.54) (8.87) (8.56) (10.35) (14.48) (-10.69) (5.58) (1.61) (4.91) (-2.97) (-13.33) (-10.65)

Panel A2: Portfolios Sorted by Green Fund Ownership and ESG Rating (Nov 2012–Dec 2019)

Low 0.454*** 0.451*** 0.450*** 0.421*** 0.436*** -0.018 0.442*** -0.024*** -0.018** -0.028*** -0.047*** -0.030*** -0.006 -0.029***
(11.80) (12.06) (13.23) (13.67) (12.75) (-1.33) (12.99) (-2.75) (-2.35) (-5.02) (-5.29) (-4.40) (-0.53) (-9.18)

2 0.519*** 0.525*** 0.490*** 0.489*** 0.502*** -0.017 0.505*** -0.009 0.001 -0.033*** -0.032*** -0.035*** -0.026** -0.022***
(22.22) (23.45) (19.08) (22.69) (29.57) (-1.21) (24.17) (-1.49) (0.14) (-4.29) (-4.34) (-4.12) (-2.18) (-7.72)

3 0.517*** 0.439*** 0.493*** 0.512*** 0.548*** 0.032*** 0.501*** 0.016** -0.058*** -0.028*** 0.002 0.015*** -0.000 -0.011***
(16.83) (18.50) (25.31) (27.18) (23.30) (2.91) (21.80) (2.04) (-9.88) (-4.37) (0.37) (2.72) (-0.03) (-4.04)

4 0.490*** 0.445*** 0.493*** 0.478*** 0.457*** -0.033 0.457*** 0.013 -0.037*** -0.003 -0.015 -0.050*** -0.063*** -0.023***
(13.52) (16.57) (17.93) (30.03) (22.74) (-0.95) (20.00) (1.13) (-2.75) (-0.39) (-1.39) (-8.82) (-4.76) (-4.17)

High 0.521*** 0.553*** 0.543*** 0.506*** 0.411*** -0.110*** 0.490*** 0.003 0.048*** 0.036*** 0.004 -0.053*** -0.055*** -0.003*
(15.83) (28.12) (22.39) (18.58) (12.38) (-6.73) (17.52) (0.29) (9.65) (6.88) (0.81) (-17.91) (-5.53) (-1.72)

HML-G 0.067 0.102*** 0.092** 0.085** -0.025 -0.092*** 0.048 0.026** 0.066*** 0.063*** 0.051*** -0.023*** -0.049*** 0.026***
(1.40) (2.96) (2.48) (2.24) (-0.63) (-3.96) (1.27) (2.63) (7.95) (9.52) (5.24) (-3.49) (-3.81) (8.59)

All 0.504*** 0.469*** 0.519*** 0.529*** 0.454*** -0.049*** -0.003 -0.022*** 0.021*** 0.024*** -0.027*** -0.023***
(17.81) (14.47) (20.98) (27.90) (16.28) (-4.21) (-0.53) (-4.14) (5.16) (5.38) (-11.23) (-3.10)

Panel B1: Portfolios Sorted by Brown Fund Ownership and ESG Rating (Jan 2001–Oct 2012)

Low 0.451*** 0.455*** 0.394*** 0.451*** 0.391*** -0.060*** 0.424*** -0.017 -0.001 -0.027*** -0.032*** -0.083*** -0.066*** -0.050***
(12.30) (11.06) (9.07) (14.62) (14.39) (-3.50) (14.11) (-1.20) (-0.08) (-2.85) (-4.46) (-16.03) (-4.69) (-9.23)

2 0.497*** 0.476*** 0.446*** 0.493*** 0.463*** -0.034*** 0.485*** 0.009 0.010 -0.004 -0.015* -0.029*** -0.038*** -0.009
(13.18) (12.27) (8.12) (14.74) (14.02) (-2.97) (14.02) (0.65) (1.24) (-0.50) (-1.75) (-3.23) (-3.43) (-1.07)

3 0.522*** 0.453*** 0.435*** 0.445*** 0.505*** -0.017 0.507*** 0.010 0.004 -0.007 -0.020** -0.003 -0.013 -0.001
(13.82) (9.20) (8.21) (11.24) (16.30) (-1.44) (15.66) (1.08) (0.48) (-0.98) (-1.99) (-0.44) (-1.22) (-0.13)

4 0.553*** 0.538*** 0.489*** 0.490*** 0.571*** 0.018 0.540*** 0.036*** 0.018** 0.005 0.012** 0.038*** 0.002 0.024***
(18.15) (20.24) (15.28) (13.22) (21.71) (1.40) (19.01) (3.94) (2.40) (0.48) (2.34) (4.30) (0.22) (3.79)

High 0.584*** 0.547*** 0.518*** 0.562*** 0.579*** -0.005 0.563*** 0.061*** 0.029*** 0.019* 0.041*** 0.037*** -0.024*** 0.038***
(19.59) (17.43) (15.30) (17.33) (19.59) (-0.67) (18.54) (5.52) (2.78) (1.79) (3.60) (3.61) (-3.68) (3.84)

HML-B 0.133*** 0.092** 0.124*** 0.111*** 0.188*** 0.055*** 0.139*** 0.079*** 0.030** 0.046*** 0.073*** 0.121*** 0.042*** 0.088***
(5.09) (2.53) (2.79) (6.54) (10.71) (3.17) (7.83) (3.46) (2.20) (3.05) (5.72) (10.03) (2.87) (6.50)

All 0.527*** 0.452*** 0.449*** 0.427*** 0.425*** -0.103*** 0.025*** 0.011 0.014*** -0.015*** -0.049*** -0.074***
(15.54) (8.87) (8.56) (10.35) (14.48) (-10.69) (5.58) (1.61) (4.91) (-2.97) (-13.33) (-10.65)

Panel B2: Portfolios Sorted by Brown Fund Ownership and ESG Rating (Nov 2012–Dec 2019)

Low 0.488*** 0.524*** 0.538*** 0.500*** 0.409*** -0.079*** 0.480*** -0.010 0.032*** 0.041*** 0.000 -0.053*** -0.043*** -0.005***
(13.21) (20.36) (29.52) (20.24) (12.38) (-5.30) (17.78) (-1.07) (7.20) (6.33) (0.06) (-17.54) (-4.10) (-4.97)

2 0.473*** 0.502*** 0.508*** 0.500*** 0.489*** 0.016 0.493*** -0.014 -0.006 0.001 -0.010 -0.028*** -0.014 -0.015***
(17.36) (18.28) (20.78) (25.79) (21.09) (1.01) (21.77) (-1.36) (-1.07) (0.11) (-1.03) (-5.35) (-1.31) (-2.84)

3 0.498*** 0.473*** 0.501*** 0.475*** 0.466*** -0.032** 0.483*** -0.009 -0.047*** -0.020*** -0.045*** -0.050*** -0.041*** -0.035***
(17.78) (18.43) (16.03) (22.37) (20.83) (-2.55) (19.57) (-1.07) (-8.08) (-3.39) (-7.30) (-6.11) (-2.96) (-9.56)

4 0.519*** 0.483*** 0.498*** 0.495*** 0.491*** -0.028** 0.497*** 0.016*** -0.028*** -0.026*** -0.023*** -0.022*** -0.038*** -0.017***
(20.10) (17.93) (16.42) (22.16) (24.14) (-2.43) (20.13) (2.76) (-4.18) (-4.32) (-4.55) (-3.52) (-4.01) (-4.95)

High 0.552*** 0.521*** 0.526*** 0.534*** 0.540*** -0.012 0.534*** 0.015*** 0.007 -0.001 0.010* 0.017*** 0.002 0.009***
(23.25) (18.19) (18.13) (21.09) (28.17) (-1.49) (21.29) (4.16) (0.94) (-0.13) (1.92) (2.72) (0.25) (2.74)

HML-B 0.064*** -0.003 -0.012 0.035*** 0.131*** 0.066*** 0.053*** 0.024** -0.026*** -0.041*** 0.010* 0.069*** 0.045*** 0.014***
(3.23) (-0.31) (-0.66) (4.41) (8.62) (3.43) (9.24) (2.23) (-2.98) (-3.47) (1.68) (8.77) (3.25) (4.59)

All 0.504*** 0.469*** 0.519*** 0.529*** 0.454*** -0.049*** -0.003 -0.022*** 0.021*** 0.024*** -0.027*** -0.023***
(17.81) (14.47) (20.98) (27.90) (16.28) (-4.21) (-0.53) (-4.14) (5.16) (5.38) (-11.23) (-3.10)

A - 23


